Skip to main content

Stabilization of HAC1 Influenza Vaccine by Spray Drying: Formulation Development and Process Scale-Up

ABSTRACT

Purpose

Stable vaccines with long shelf lives and reduced dependency on the cold chain are ideal for stockpiling and rapid deployment during public emergencies, including pandemics. Spray drying is a low-cost process that has potential to produce vaccines stable at a wide range of temperatures. Our aim was to develop a stable formulation of a recombinant H1N1 influenza hemagglutinin vaccine candidate and take it to pilot-scale spray-drying production.

Methods

Eight formulations containing different excipients were produced and assayed for antigen stability, powder characteristics, and immunogenicity after storage at a range of temperatures, resulting in the identification of four promising candidates. A pilot-scale spray-drying process was then developed for further testing of one formulation.

Results

The pilot-scale process was used to reproducibly manufacture three batches of the selected formulation with yields >90%. All batches had stable physical properties and in vitro potency for 6 months at temperatures from −20°C to +50°C. Formulations stored for 3 months elicited immunogenic responses in mice equivalent to a frozen lot of bulk vaccine used as a stability control.

Conclusions

This study demonstrates the feasibility of stabilizing subunit vaccines using a spray-drying process and the suitability of the process for manufacturing a candidate product.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

DSC:

Differential scanning calorimetry

HAI:

Hemagglutination inhibition

KF:

Karl Fischer moisture content analysis

mDSC:

Modulated differential scanning calorimetry

PBS:

Phosphate-buffered saline

PXRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

SRID:

Single radial immunodiffusion

Tg :

Glass transition temperature

Tm :

Melting temperature

ZBH:

Zero-background holder

REFERENCES

  1. 1.

    World Health Organization (WHO), United Nations Children’s Fund, World Bank. State of the world’s vaccines and immunization. 3rd ed. Geneva: WHO; 2009.

    Google Scholar 

  2. 2.

    Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    World Health Organization (WHO). Temperature sensitivity of vaccines. Geneva: WHO; 2006.

    Google Scholar 

  4. 4.

    Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Saluja V, Hinrichs WL, Frijlink HW. Dried influenza vaccines: over the counter vaccines. Hum Vaccin. 2010;6(10):854–6.

    PubMed  Article  Google Scholar 

  6. 6.

    Schlehubera L, McFadyena I, Yu S, Carignana J, Duprex WP, Forsyth WR, et al. Towards ambient temperature-stable vaccines: the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine. 2011;29(31):5031–9.

    Article  Google Scholar 

  7. 7.

    Chen D, Kristensen D. Opportunities and challenges of developing thermostable vaccines. Expert Rev Vaccines. 2009;8(5):547–57.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kristensen D, Chen D, Cummings R. Vaccine stabilization: research, commercialization, and potential impact. Vaccine. 2011;29(41):7122–4.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Mustien JB, Lemon SM, Wright PF. Development of a more thermostable poliovirus vaccine. J Infect Dis. 1997;175 Suppl 1:S247–53.

    Article  Google Scholar 

  10. 10.

    Braun LJ, Jezek J, Peterson S, Tyagi A, Perkins S, Sylvester D, et al. Characterization of a thermostable hepatitis B vaccine formulation. Vaccine. 2009;27(34):4609–14.

    PubMed  Article  Google Scholar 

  11. 11.

    Amorij JP, Huckriede A, Wilschut J, Frijlink HW, Hinrichs WL. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25(6):1256–73.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Maa YF, Ameri M, Shu C, Payne LG, Chen D. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci. 2004;93(7):1912–23.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Seville PC, Li HY, Learoyd TP. Spray-dried powders for pulmonary drug delivery. Crit Rev Ther Drug Carrier Syst. 2007;24(4):307–60.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cape SP, Villa JA, Huang ET, Yang TH, Carpenter JF, Sievers RE. Preparation of active proteins, vaccines and pharmaceuticals as fine powders using supercritical or near-critical fluids. Pharm Res. 2008;25(9):1967–90.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. 15.

    Jangle RD, Pisal SS. Vacuum foam drying: an alternative to lyophilization for biomolecule preservation. Indian J Pharm Sci. 2012;74(2):91–100.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Jin TH, Tsao E, Goudsmit J, Dheenadhayalan V, Sadoff J. Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). Vaccine. 2010;28(27):4369–75.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Chen D, Kapre S, Goel A, Suresh K, Beri S, Hickling J, et al. Thermostable formulations of a hepatitis B vaccine and a meningitis A polysaccharide conjugate vaccine produced by a spray drying method. Vaccine. 2010 Jul 12;28(31):5093–9.

  18. 18.

    Ohtake S, Martin RA, Yee L, Chen D, Kristensen D, Lechuga-Ballesteros D, et al. Heat-stable measles vaccine produced by spray drying. Vaccine. 2010;28(5):1275–84.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    DuBose E, Settell D, Baumann J. Efficient scale-up strategy for spray-dried amorphous dispersions. Drug Dev Deliv. October 2013;13(8):54–62.

  20. 20.

    Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V, et al. Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccin. 2011;7(Suppl):41–50.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Shoji Y, Chichester JA, Bi H, Musiychuk K, de la Rosa P, Goldschmidt L, et al. Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine. 2008;26(23):2930–4.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir Viruses. 2012;6(3):204–10.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Shoji Y, Jones MR, Mett V, Chichester JA, Musiychuck K, Sun X, et al. A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother. 2013;9(3):553–60.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. 24.

    Iver V, Livanage MR, Shoji Y, Chichester JA, Jones RM, Yusibov V, et al. Formulation development of a plant-derived H1N1 influenza vaccine containing purified recombinant hemagglutinin antigen. Hum Vaccin Immunother. 2012;8(4):453–64.

    Article  Google Scholar 

  25. 25.

    Surawase RK, Surana SS, Maru AD, Malpure PS. Development of directly compressible co-excipient by spray drying technique. Int J Pharm Phytopharmacol Res. 2011;1(1):35–47.

    CAS  Google Scholar 

  26. 26.

    Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, et al. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem. 2007;127(1–2):1–8.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Roos YH. Importance of glass transition and water activity to spray-drying and stability of dairy powders. Lait. 2002;82:475–84.

    Article  CAS  Google Scholar 

  28. 28.

    Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458–65.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Leslie SB, Israeli E, Lighthart B, Crowe JH. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61(10):3592–7.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported with funding from the Defense Threat Reduction Agency. The authors wish to thank Patricia Logan, Amy Wales, and Marjorie Murray for their assistance in the development of this article, Megan Coffin and Dione Gray for their technical assistance with the immunogenicity studies, and Dr. John Sumida for the sample testing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manjari Lal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Shoji, Y., McCray, S. et al. Stabilization of HAC1 Influenza Vaccine by Spray Drying: Formulation Development and Process Scale-Up. Pharm Res 31, 3006–3018 (2014). https://doi.org/10.1007/s11095-014-1394-3

Download citation

KEY WORDS

  • pilot scale-up
  • spray drying
  • thermostable
  • vaccines