Skip to main content
Log in

A Magnetic Nanoparticle Stabilized Gas Containing Emulsion for Multimodal Imaging and Triggered Drug Release

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a multimodal imaging guided and triggered drug delivery system based on a novel emulsion formulation composed of iron oxide nanoparticles, nanoscopic bubbles, and oil containing drugs.

Methods

Iron oxide paramagnetic nanoparticles were synthesized and modified with surface conjugation of polyethylenimide (PEI) or Bovine Serum Albumin (BSA). Both particles were used to disperse and stabilize oil in water emulsions containing coumarin-6 as the model drug. Sulfur hexafluoride was introduced into the oil phase to form nanoscopic bubbles inside the emulsions. The resulted gas containing emulsions were evaluated for their magnetic resonance (MR) and ultrasound (US) imaging properties. The drug release profile triggered by ultrasound was also examined.

Results

We have successfully prepared the highly integrated multi-component emulsion system using the surface modified iron oxide nanoparticles to stabilize the interfaces. The resulted structure had distinctive MR and US imaging properties. Upon application of ultrasound waves, the gas containing emulsion would burst and encapsulated drug could be released.

Conclusion

The integrated emulsion formulation was multifunctional with paramagnetic, sono-responsive and drug-carrying characteristics, which may have potential applications for disease diagnosis and imaging guided drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Voliani V, Signore G, Nifosi R, Ricci F, Luin S, Beltram F. Smart delivery and controlled drug release with gold nanoparticles: new frontiers in nanomedicine. Recent Patents Nanomed. 2012;2:34–44.

    Article  CAS  Google Scholar 

  2. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22:1879–903.

    Article  CAS  PubMed  Google Scholar 

  3. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem. 2012;23:1322–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Control Release. 2012;161:328–37.

    Article  CAS  PubMed  Google Scholar 

  6. Lorenzato C, Cernicanu A, Meyre ME, Germain M, Pottier A, Levy L, et al. MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: a tool for image-guided local drug delivery. Contrast Media Mol Imaging. 2013;8:185–92.

    Article  CAS  PubMed  Google Scholar 

  7. Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7:2078–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia. 2011;27:156–71.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang K, Wu W, Guo K, Chen J, Zhang P. Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A Physicochem Eng Asp. 2009;349:110–6.

    Article  CAS  Google Scholar 

  10. Taratula O, Garbuzenko O, Savla R, Wang YA, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv. 2011;8:59–69.

    Article  CAS  PubMed  Google Scholar 

  11. Khemtong C, Kessinger CW, Gao J. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem Commun (Camb). 2009;24:3497–510.

    Article  Google Scholar 

  12. Tai LA, Tsai PJ, Wang YC, Wang YJ, Lo LW, Yang CS. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology. 2009;20:135101.

    Article  PubMed  Google Scholar 

  13. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater. 2010;22:880–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Geers B, Dewitte H, De Smedt SC, Lentacker I. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release. 2012;164:248–55.

    Article  CAS  PubMed  Google Scholar 

  15. Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release. 2001;71:239–49.

    Article  CAS  PubMed  Google Scholar 

  16. Sridhar-Keralapura M, Thirumalai S, Mobed-Miremadi M. Structural changes and imaging signatures of acoustically sensitive microcapsules under ultrasound. Ultrasonics. 2013;53:1044–57.

    Article  CAS  PubMed  Google Scholar 

  17. Deckersand R, Moonen CT. Ultrasound triggered, image guided, local drug delivery. J Control Release. 2010;148:25–33.

    Article  Google Scholar 

  18. Gao MZ, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm. 2004;1:317–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release. 2009;137:63–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Li X, Zhou Y, Huang P, Xu Y. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm. 2010;384:148–53.

    Article  CAS  PubMed  Google Scholar 

  21. de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release. 2011;150:102–10.

    Article  PubMed  Google Scholar 

  22. de Smet M, Hijnen NM, Langereis S, Elevelt A, Heijman E, Dubois L, et al. Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin. Investig Radiol. 2013;48:395–405.

    Article  Google Scholar 

  23. Liu SP, Wei XH, Chu MQ, Peng JL, Xu YH. Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups. Colloids Surf B Biointerfaces. 2006;51:101–6.

    Article  CAS  PubMed  Google Scholar 

  24. Prestidgeand C, Simovic S. Nanoparticle encapsulation of emulsion droplets. Int J Pharm. 2006;324:92–100.

    Article  Google Scholar 

  25. Saleh N, Sarbu T, Sirk K, Lowry G, Matyjaszewski K, Tilton R. Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles. Langmuir. 2005;21:9873–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Zhang C, Li Y, Chen Y, Tong Z. Facile fabrication of nanocomposite microspheres with polymer cores and magnetic shells by Pickering suspension polymerization. React Funct Polym. 2009;69:750–4.

    Article  CAS  Google Scholar 

  27. Whitby C, Fornasiero D, Ralston J. Structure of oil-in-water emulsions stabilised by silica and hydrophobised titania particles. J Colloid Interface Sci. 2010;342:205–9.

    Article  CAS  PubMed  Google Scholar 

  28. Simovic S, Hui H, Song Y, Davey A, Rades T, Prestidge C. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles. J Control Release. 2010;143:367–73.

    Article  CAS  PubMed  Google Scholar 

  29. Simovicand S, Prestidge C. Nanoparticle layers controlling drug release from emulsions. Eur J Pharm Biopharm. 2007;67:39–47.

    Article  Google Scholar 

  30. Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials. 2009;30:3882–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Li, D., Zhu, Ja. et al. A Magnetic Nanoparticle Stabilized Gas Containing Emulsion for Multimodal Imaging and Triggered Drug Release. Pharm Res 31, 1477–1484 (2014). https://doi.org/10.1007/s11095-014-1365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1365-8

KEY WORDS

Navigation