Skip to main content

Advertisement

Log in

Development of Vorinostat-Loaded Solid Lipid Nanoparticles to Enhance Pharmacokinetics and Efficacy against Multidrug-Resistant Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether delivery of a histone deacetylase inhibitor, vorinostat (VOR), by using solid lipid nanoparticles (SLNs) enhanced its bioavailability and effects on multidrug-resistant cancer cells.

Methods

VOR-loaded SLNs (VOR-SLNs) were prepared by hot homogenization using an emulsification-sonication technique, and the formulation parameters were optimized. The cytotoxicity of the optimized formulation was evaluated in cancer cell lines (MCF-7, A549, and MDA-MB-231), and pharmacokinetic parameters were examined following oral and intravenous (IV) administration to rats.

Results

VOR-SLNs were spherical, with a narrowly distributed average size of ~100 nm, and were physically stable for 3 months. Drug release showed a typical bi-phasic pattern in vitro, and was independent of pH. VOR-SLNs were more cytotoxic than the free drug in both sensitive (MCF-7 and A549) and resistant (MDA-MB-231) cancer cells. Importantly, SLN formulations showed prominent cytotoxicity in MDA-MB-231 cells at low doses, suggesting an ability to effectively counter the P-glycoprotein-related drug efflux pumps. Pharmacokinetic studies clearly demonstrated that VOR-SLNs markedly improved VOR plasma circulation time and decreased its elimination rate constant. The areas under the VOR concentration-time curve produced by oral and IV administration of VOR-SLNs were significantly greater than those produced by free drug administration. These in vivo results clearly highlighted the remarkable potential of SLNs to augment the bioavailability of VOR.

Conclusions

VOR-SLNs successfully enhanced the oral bioavailability, circulation half-life, and chemotherapeutic potential of VOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25:84–90.

    Article  CAS  PubMed  Google Scholar 

  2. Cai YY, Yap CW, Wang Z, Ho PC, Chan SY, Ng KY, et al. Solubilization of vorinostat by cyclodextrins. J Clin Pharm Ther. 2010;35:521–6.

    Article  CAS  PubMed  Google Scholar 

  3. Choo QY, Ho PC, Lin HS. Histone deacetylase inhibitors: new hope for rheumatoid arthritis? Curr Pharm Des. 2008;14:803–20.

    Article  CAS  PubMed  Google Scholar 

  4. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  5. Mohamed EA, Zhao Y, Meshali MM, Remsberg CM, Borg TM, Foda AM, et al. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-Lactic Acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine. J Pharm Sci. 2012;101:3787–98.

    Article  CAS  PubMed  Google Scholar 

  6. Kavanaugh SA, White LA, Kolesar JM. Vorinostat: a novel therapy for the treatment of cutaneous T-cell lymphoma. Am J Health Syst Pharm. 2010;67:793–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kelly WK, O’Connor OA, Krug ML, Chiao JH, Heaney M, Curley T, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 2005;23:3923–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Iwamoto M, Friedman EJ, Sandhu P, Agrawal NG, Rubin EH, Wagner JA. Cancer Chemother Pharmacol. 2013;72:493–508.

    Article  CAS  PubMed  Google Scholar 

  9. Richard J. Challenges and opportunities in the delivery of cancer therapeutics. Ther Deliv. 2011;2:107–21.

    Article  CAS  PubMed  Google Scholar 

  10. Strobl JS, Nikkhah M, Agah M. Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures. Biomaterials. 2010;31:7043–50.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang P, Ling G, Pan X, Sun J, Zhang T, Pu X, et al. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine. 2012;8:185–93.

    Article  PubMed  Google Scholar 

  12. Liu J, Gong T, Wang C, Zhong Z, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm. 2007;340:153–62.

    Article  CAS  PubMed  Google Scholar 

  13. Das S, Choudhary A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:62–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech. 2007;8:E162–70.

    Article  PubMed Central  Google Scholar 

  15. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30:226–32.

    Article  PubMed  Google Scholar 

  16. Ramasamy TG, Haidar ZS. Formulation, characterization and cytocompatibility evaluation of novel core–shell solid lipid nanoparticles for the controlled and tunable delivery of a model protein. J Bionanosci. 2011;5:143–54.

    Article  CAS  Google Scholar 

  17. Carneiro G, Silva EL, Pacheco LA, de Souza-Fagundes EM, Corrêa NC, de Goes AM, et al. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:6011–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Mussi SV, Silva RC, Oliveira MC, Lucci CM, Azevedo RB, Ferreira LA. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci. 2013;48:282–90.

    Article  CAS  PubMed  Google Scholar 

  19. Pradhan R, Poudel BK, Ramasamy TG, Choi HG, Yong CS, Kim JO. Docetaxel-loaded PLGA nanoparticles: formulation, physicochemical characterization and cytotoxicity studies. J Nanosci Nanotechnol. 2013;13:5948–56.

    Article  CAS  PubMed  Google Scholar 

  20. Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005;14:1497–511.

    Article  CAS  PubMed  Google Scholar 

  21. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Huang JM, Sheard MA, Ji L, Sposto R, Keshelava N. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol Cancer Ther. 2010;9:3289–301.

    Article  CAS  PubMed  Google Scholar 

  23. Ozaki K, Kishikawa F, Tanaka M, Sakamoto T, Tanimura S, Kohno M. Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross-resistance to a wide range of DNA-damaging drugs. Cancer Sci. 2008;99:376–84.

    Article  CAS  PubMed  Google Scholar 

  24. Konsoula R, Jung M. In vitro plasma stability, permeability and solubility of mercaptoacetamide histone deacetylase inhibitors. Int J Pharm. 2008;361:19–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhu R, Cheng KW, Mackenzie G, Huang L, Sun Y, Xie G, et al. Phospho-Sulindac (OXT-328) Inhibits the Growth of Human Lung Cancer Xenografts in Mice: Enhanced Efficacy and Mitochondria Targeting by its Formulation in Solid Lipid Nanoparticles. Pharm Res. 2012;29:3090–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009;69:3918–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Li S, Su Z, Sun M, Xiao Y, Cao F, Huang A, et al. Anarginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Int J Pharm. 2012;436:248–57.

    Article  CAS  PubMed  Google Scholar 

  28. Chen CC, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74:474–82.

    Article  CAS  PubMed  Google Scholar 

  29. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6:753–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002;243:135–46.

    Article  CAS  PubMed  Google Scholar 

  31. Wissing SA, Müller RH. Solid lipid nanoparticles (SLN)-a novel carrier for UV blockers. Pharmazie. 2001;56:783–6.

    CAS  PubMed  Google Scholar 

  32. Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9:111–21.

    Article  CAS  PubMed  Google Scholar 

  33. Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm. 2008;348:137–45.

    Article  CAS  PubMed  Google Scholar 

  34. Silva AC, Kumar A, Wild W, Ferreira D, Santos D, Forbes B. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm. 2012;436:798–805.

    Article  CAS  PubMed  Google Scholar 

  35. Kim JO, Ramasamy T, Yong CS, Nukolova N, Bronich TK, Kabanov AV. Cross-linked polymeric micelles based on block ionomer complexes. Mendeleev Comm. 2013;23:179–86.

    Article  CAS  Google Scholar 

  36. Zhang X, Liu J, Qiao H, Liu H, Ni J, Zhang W, et al. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol. 2010;197:120–8.

    Article  CAS  Google Scholar 

  37. Rawat K, Jain A, Singh S. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci. 2011;100:2366–78.

    Article  CAS  PubMed  Google Scholar 

  38. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  CAS  PubMed  Google Scholar 

  39. Bosea S, Duc Y, Takhistovc P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid based nano systems. Int J Pharm. 2013;441:56–66.

    Article  Google Scholar 

  40. Jaina A, Agarwala A, Majumderb S, Lariyaa N, Khayaa A, Agrawalc H, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148:359–67.

    Article  Google Scholar 

  41. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm. 2012;430:238–46.

    Article  CAS  PubMed  Google Scholar 

  43. Di Bernardo G, Alessio N, Dell’Aversana C, Casale F, Teti D, Cipollaro M. Impact of histone deacetylase inhibitors SAHA and MS-275 on DNA repair pathways in human mesenchymal stem cells. J Cell Physiol. 2010;225:537–44.

    Article  PubMed  Google Scholar 

  44. Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415:232–43.

    Article  CAS  PubMed  Google Scholar 

  45. Jacobs C, Kayser O, Muller RH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196:161–4.

    Article  CAS  PubMed  Google Scholar 

  46. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–7.

    Article  CAS  PubMed  Google Scholar 

  47. Luo YF, Chen DW, Ren LX, Zhao XL, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114:53–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sandhu P, Andrews PA, Baker MP, Koeplinger KA, Soli ED, Miller T, et al. Disposition of vorinostat, a novel histone deacetylase inhibitor and anticancer agent, in preclinical species. Drug Metab Lett. 2007;1:153–61.

    Article  CAS  PubMed  Google Scholar 

  49. Kim JO, Oberoi H, Desale SH, Kabanov AV, Bronich TK. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery. J Drug Target. 2013;21:981–93.

    Article  CAS  PubMed  Google Scholar 

  50. Tran TH, Ramasamy T, Cho HJ, Kim YI, Poudel BK, Choi HG, et al. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J Nanosci Nanotechnol. 2013;Accepted.

  51. Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2007;2:289–300.

    Google Scholar 

Download references

Acknowledgments and Disclosures

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. 2012R1A2A2A02044997 and No. 2012R1A1A1039059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Jong Oh Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, T.H., Ramasamy, T., Truong, D.H. et al. Development of Vorinostat-Loaded Solid Lipid Nanoparticles to Enhance Pharmacokinetics and Efficacy against Multidrug-Resistant Cancer Cells. Pharm Res 31, 1978–1988 (2014). https://doi.org/10.1007/s11095-014-1300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1300-z

Key words

Navigation