Pharmaceutical Research

, Volume 31, Issue 7, pp 1846–1854 | Cite as

Novel Hollow Microneedle Technology for Depth-Controlled Microinjection-Mediated Dermal Vaccination: A Study with Polio Vaccine in Rats

  • Koen van der Maaden
  • Sebastiaan J. Trietsch
  • Heleen Kraan
  • Eleni Maria Varypataki
  • Stefan Romeijn
  • Raphäel Zwier
  • Heiko J. van der Linden
  • Gideon Kersten
  • Thomas Hankemeier
  • Wim Jiskoot
  • Joke BouwstraEmail author
Research Paper



The aim of the study was to develop a cheap and fast method to produce hollow microneedles and an applicator for injecting vaccines into the skin at a pre-defined depth and test the applicability of the system for dermal polio vaccination.


Hollow microneedles were produced by hydrofluoric acid etching of fused silica capillaries. An electromagnetic applicator was developed to control the insertion speed (1–3 m/s), depth (0–1,000 μm), and angle (10°–90°). Hollow microneedles with an inner diameter of 20 μm were evaluated in ex vivo human skin and subsequently used to immunize rats with inactivated poliovirus vaccine (IPV) by an intradermal microinjection of 9 μL at a depth of 300 μm and an insertion speed of 1 m/s. Rat sera were tested for IPV-specific IgG and virus-neutralizing antibodies.


Microneedles produced from fused silica capillaries were successfully inserted into the skin to a chosen depth, without clogging or breakage of the needles. Intradermal microinjection of IPV induced immune responses comparable to those elicited by conventional intramuscular immunization.


We successfully developed a hollow microneedle technology for dermal vaccination that enables fundamental research on factors, such as insertion depth and volume, and insertion angle, on the immune response.


intradermal immunization microinjections microneedles polio vaccine vaccine delivery 



Inactivated polio vaccine


Oral polio vaccine


Virus neutralizing



Koen van der Maaden and Sebastiaan J. Trietsch contributed equally. We thank the Electronics Department at Leiden University for their help in the development of the microneedle applicator. Furthermore, we thank Aat Mulder for preparing the cryosections of rat skin and Pim Schipper for performing the microinjections into ex vivo human skin and the subsequent cryosections. This work was (co)financed by the Netherlands Metabolomics Centre (NMC), which is a part of The Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Supplementary material

11095_2013_1288_MOESM1_ESM.docx (44 kb)
Figure S1 (DOCX 44 kb)


  1. 1.
    Bal SM et al. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release. 2010;148(3):266–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Prausnitz MR,Gill HS, Park J-H. Microneedles for drug delivery. In: Modified release, drug delivery. 2008. p. 295–309.Google Scholar
  4. 4.
    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Kew OM et al. Vaccine-derived poliovirusus and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59(1):587–635.PubMedCrossRefGoogle Scholar
  6. 6.
    Salk JE, et al. Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines. 2011.Google Scholar
  7. 7.
    Fine PEM, Carneiro IAM. Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative. Am J Epidemiol. 1999;150(10):1001–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Modlin JF. Poliomyelitis in the United States: the final chapter? JAMA: J Am Med Assoc. 2004;292(14):1749–51.CrossRefGoogle Scholar
  9. 9.
    Nathanson N, Kew OM. From emergence to eradication: the epidemiology of poliomyelitis deconstructed. Am J Epidemiol. 2010;172(11):1213–29.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nelson KS et al. Intradermal fractional dose inactivated polio vaccine: a review of the literature. Vaccine. 2012;30:121–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicolas J-F, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7(8):1201–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Chandrasekaran S, Frazier AB. Mechanical characterization of surface micromachined hollow metallic microneedles. IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto, 2002: p. 363–366.Google Scholar
  13. 13.
    Davis SP et al. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52:909–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Gardeniers HJGE et al. Silicon micromachined hollow microneedles for Transdermal liquid transport. J Microelectromech Syst. 2003;12(3):855–62.CrossRefGoogle Scholar
  15. 15.
    McAllister DV et al. Microfabricated needles for Transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A. 2003;100(24):13755–60.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Verbaan FJ et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008;128:80–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Westdijk J et al. Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines. Vaccine. 2011;29:3390–7.PubMedCrossRefGoogle Scholar
  18. 18.
    van Steenis G, van Wezel A, Sekhuis V. Potency testing of killed polio vaccine in rats. Dev Biol Stand. 1981;47:119–28.PubMedGoogle Scholar
  19. 19.
    Westdijk J et al. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains. Vaccine. 2013;31:1298–304.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cormier M et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang PM et al. Precise microinjection into skin using hollow microneedles. J Investig Dermatol. 2006;126(5):1080–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Haq MI et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11(1):35–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang M, Zahn JD. Microneedle insertion force reduction using vibratory actuation. Biomed Microdevices. 2004;6(3):177–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Crichton ML et al. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials. 2010;31:4562–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Martanto W et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1):104–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Roxhed N et al. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng. 2008;55(3):1063–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Paik S-J et al. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sensors Actuators A Phys. 2004;2004:276–84.CrossRefGoogle Scholar
  28. 28.
    Cui Q, Liu C, Zha XF. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid. 2007;3:377–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Koen van der Maaden
    • 1
  • Sebastiaan J. Trietsch
    • 2
  • Heleen Kraan
    • 3
  • Eleni Maria Varypataki
    • 1
  • Stefan Romeijn
    • 1
  • Raphäel Zwier
    • 4
  • Heiko J. van der Linden
    • 2
  • Gideon Kersten
    • 1
    • 3
  • Thomas Hankemeier
    • 2
  • Wim Jiskoot
    • 1
  • Joke Bouwstra
    • 1
    Email author
  1. 1.Division of Drug Delivery Technology Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
  2. 2.Division of Analytical Biosciences Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
  3. 3.Institute for Translational Vaccinology (Intravacc)Bilthoventhe Netherlands
  4. 4.Fine Mechanical Department, Leiden Institute of Physics (LION)Leiden UniversityLeidenthe Netherlands

Personalised recommendations