Skip to main content

Advertisement

Log in

Concentration Dependency in Nicotine Skin Penetration Flux from Aqueous Solutions Reflects Vehicle Induced Changes in Nicotine Stratum Corneum Retention

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study sought to understand the mechanism by which the steady state flux of nicotine across the human skin from aqueous solutions is markedly decreased at higher nicotine concentrations.

Methods

Nicotine’s steady state flux through human epidermis and its amount in the stratum corneum for a range of aqueous nicotine solutions was determined using Franz diffusion cells, with the nicotine analysed by high performance liquid chromatography (HPLC). Nicotine’s thermodynamic activity in the various solutions was estimated from its partial vapour pressure and stratum corneum hydration was determined using a corneometer. The amount of nicotine retained in the stratum corneum was estimated from the nicotine amount found in individual stratum corneum tape strips and a D-Squame determined weight for each strip.

Results

The observed steady state flux of nicotine across human epidermis was found to show a parabolic dependence on nicotine concentration, with the flux proportional to its thermodynamic activity up to a concentration of 48% w/w. The nicotine retention in the stratum corneum showed a similar dependency on concentration whereas the diffusivity of nicotine in the stratum corneum appeared to be concentration independent. This retention, in turn, could be estimated from the extent of stratum corneum hydration and the nicotine concentration in the applied solution and volume of water in the skin.

Conclusions

Nonlinear dependency of nicotine skin flux on its concentration results from a dehydration induced decrease in its stratum corneum retention at higher concentration and not dehydration induced changes nicotine diffusivity in the stratum corneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Asmussen B. Transdermal therapeutic systems–actual state and future developments. Methods Find Exp Clin Pharmacol. 1991;13(5):343.

    CAS  PubMed  Google Scholar 

  2. Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE J. 1975;21(5):985–96.

    Article  CAS  Google Scholar 

  3. Aronson JK. Nicotine replacement therapy. In: Aronson JK, editor. Meyler’s side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Amsterdam: Elsevier; 2006. p. 2508–11.

    Google Scholar 

  4. Benowitz N, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.

    Article  CAS  PubMed  Google Scholar 

  5. Domino E. Pharmacological significance of nicotine. In: John WG, Peyton III J, editors. Analytical determination of nicotine and related compounds and their metabolites. Amsterdam: Elsevier Science; 1999. p. 1–11.

    Chapter  Google Scholar 

  6. Karnath B. Smoking cessation. Am J Med. 2002;112(5):399–405.

    Article  PubMed  Google Scholar 

  7. Wilson DJB. Nicotine poisoning by absorption through the skin. Br Med J. 1930;2(3640):601–2.

    Google Scholar 

  8. Lockhart LP. Nicotine poisoning. Br Med J. 1933;1(3762):246.

    Article  PubMed Central  Google Scholar 

  9. Faulkner JM. Nicotine poisoning by absorption through the skin. J Am Med Assoc. 1933;100(21):1664–5.

    Article  Google Scholar 

  10. Rose J, Jarvik ME, Rose K. Transdermal administration of nicotine. Drug Alcohol depend. 1984;13(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  11. Rose JE, Herskovic JE, Trilling Y, Jarvik ME. Transdermal nicotine reduces cigarette craving and nicotine preference. Clin Pharmacol Ther. 1985;38(4):450–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bircher A, Howald H, Rufli T. Adverse skin reactions to nicotine in a transdermal therapeutic system. Contact Dermatitis. 1991;25(4):230–6.

    Article  CAS  PubMed  Google Scholar 

  13. Etscorn F. Transcutaneous application of nicotine. US Patent. 1986;4(597):961.

    Google Scholar 

  14. Baker R, Kochinke F, Huang C. Novel transdermal nicotine patch. US Patent. 1989;4(839):174.

    Google Scholar 

  15. Osborne J, Nelson M, Enscore D, Yum SI, Gale R. Subsaturated nicotine transdermal therapeutic system. US Patent. 1991;5(004):610.

    Google Scholar 

  16. Gupta S, Benowitz N, Jacob P, Rolf C, Gorsline J. Bioavailability and absorption kinetics of nicotine following application of a transdermal system. Br J Clin Pharmacol. 1993;36(3):221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fant R, Henningfield J, Shiffman S, Strahs K, Reitberg D. A pharmacokinetic crossover study to compare the absorption characteristics of three transdermal nicotine patches. Pharmacol Biochem Behav. 2000;67(3):479–82.

    Article  CAS  PubMed  Google Scholar 

  18. DeVeaugh-Geiss AM, Chen LH, Kotler ML, Ramsay LR, Durcan MJ. Pharmacokinetic comparison of two nicotine transdermal systems, a 21-mg/24-hour patch and a 25-mg/16-hour patch: A randomized, open-label, single-dose, two-way crossover study in adult smokers. Clin Therapeut. 2010;32(6):1140–8.

    Article  CAS  Google Scholar 

  19. Zorin S, Kuylenstierna F, Thulin H. In vitro test of nicotine’s permeability through human skin. Risk evaluation and safety aspects. Ann Occup Hyg. 1999;43(6):405–13.

    Article  CAS  PubMed  Google Scholar 

  20. Nair MK, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: Mechanistic studies with porcine mucosae and skin. J Pharm Sci. 1997;86(2):257–62.

    Article  CAS  PubMed  Google Scholar 

  21. Oakley D, Swarbrick J. Effects of ionization on the percutaneous absorption of drugs: partitioning of nicotine into organic liquids and hydrated stratum corneum. J Pharm Sci. 1987;76(12):866–71.

    Article  CAS  PubMed  Google Scholar 

  22. Aungst B. Nicotine skin penetration characteristics using aqueous & non-aqueous vehicles, anionic polymers, and silicone matrices. Drug Dev Ind Pharm. 1988;14(11):1481–94.

    Article  CAS  Google Scholar 

  23. Roberts MS, Cross S, Pellett MA. Skin transport. In: Walters K, editor. Dermatological and transdermal formulations. 119: Informa healthcare; 2002. p. 89–194.

  24. Jiang R, Roberts MS, Prankerd RJ, Benson HAE. Percutaneous absorption of sunscreen agents from liquid paraffin: self-association of octyl salicylate and effects on skin flux. J Pharm Sci. 1997;86(7):791–6.

    Article  CAS  PubMed  Google Scholar 

  25. Pellett MA, Roberts MS, Hadgraft J. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int J Pharm. 1997;151(1):91–8.

    Article  CAS  Google Scholar 

  26. Roberts MS. Solute-vehicle-skin interactions in percutaneous absorption: the principle and the people. Skin Pharmacol Physiol. 2013;26:356–70.

    Article  CAS  PubMed  Google Scholar 

  27. Dugard PH, Scott RC. A method of predicting percutaneous absorption rates from vehicle to vehicle: an experimental assessment. Int J Pharm. 1986;28:219–27.

    Article  CAS  Google Scholar 

  28. Hudson CS. The mutual solubility of nicotine in water. Zeit Phys Chem. 1904;47(113).

  29. Davies NSA, Gillard RD. The solubility loop of nicotine: water. Trans Met Chem. 2000;25:628–9.

    Article  CAS  Google Scholar 

  30. Wiechers JW, Watkinson AC, Cross SE, Roberts MS. Predicting skin penetration of actives from complex cosmetic formulations: an evaluation of inter formulation and inter active effects during formulation optimization for transdermal delivery. Int J Cos Sci. 2012;34(6):525–35.

    Article  CAS  Google Scholar 

  31. Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88(6):702–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ho H, Chien YW. Kinetic evaluation of transdermal nicotine delivery systems. Drug Dev Ind Pharm. 1993;19(3):295–313.

    Article  CAS  Google Scholar 

  33. Norton LB, Bigelow CR, Vincent WB. Partial vapour pressures from nicotine solutions at 25. NYSAES. 1940;345:261–4.

    Google Scholar 

  34. Barry BW, Harrison SM, Dugard PH. Correlation of thermodynamic activity and vapour diffusion through human skin for the model compound, benzyl alcohol. J Pharm Pharmacol. 1985;37:84–90.

    Article  CAS  PubMed  Google Scholar 

  35. Eberlein-König B, Schäfer T, Huss-Marp J, Darsow U, Möhrenschlager M, Herbert O, et al. Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children: clinical report. Acta Derm Venereol. 2000;80(3):188–91. PubMed PMID: 3893232.

    Article  PubMed  Google Scholar 

  36. Barel A, Clarys P. In vitro calibration of the capacitance method (Corneometer CM 825) and conductance method (Skicon-200) for the evaluation of the hydration state of the skin. Skin Res Tech. 1997;3(2):107–13.

    Article  Google Scholar 

  37. Cross SE, Pugh WJ, Hadgraft J, Roberts MS. Probing the effect of vehicles on topical delivery: understanding the basic relationship between solvent and solute penetration using silicone membranes. Pharm Res. 2001;18(7):999–1005.

    Article  CAS  PubMed  Google Scholar 

  38. Dias M, Hadgraft J, Lane ME. Influence of membrane-solvent-solute interactions on solute permeation in skin. Int J Pharm. 2007;340(1–2):65–70.

    Article  CAS  PubMed  Google Scholar 

  39. Blank IH. Penetration of low molecular-weight alcohols into skin I. Effect of concentration of alcohol and type of vehicle. J Invest Dermatol. 1964;43(5):415–20.

    Article  CAS  PubMed  Google Scholar 

  40. Roberts MS. Structure-permeability considerations in percutaneous absorption. In: Scott RC, Guy RH, Hadgraft J, Boddé HE, editors. Prediction of percutaneous penetration. London: IBC; 1991. p. 210–28.

    Google Scholar 

  41. Megrab NA, Williams AC, Barry BW. Oestradiol permeation through human skin and silastic membrane: effects of propylene glycol and supersaturation. J Controlled Release. 1995;36(3):277–94.

    Article  CAS  Google Scholar 

  42. Johanson G, Fernström P. Influence of water on the percutaneous absorption of 2-butoxyethanol in guinea pigs. Scand J Work Env Hea. 1988;14(2):95–100.

    Article  CAS  Google Scholar 

  43. Traynor M, Wilkinson S, Williams F. Corrigendum to “The influence of water mixtures on the dermal absorption of glycol ethers”. Toxicol App Pharm. 2007;221(1):129.

    Article  CAS  Google Scholar 

  44. Traynor M, Wilkinson S, Williams F. The influence of water mixtures on the dermal absorption of glycol ethers. Toxicol App Pharm. 2007;218(2):128–34.

    Article  CAS  Google Scholar 

  45. Qvist M, Hoeck U, Kreilgaard B, Madsen F, Frokjaer S. Evaluation of Göttingen minipig skin for transdermal in vitro permeation studies. Eur J Pharm Sci. 2000;11(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  46. Barry BW, Harrison SM, Dugard PH. Vapour and liquid diffusion of model penetrants through human skin; correlation with thermodynamic activity. J Pharm Pharmacol. 1985;37:226–35.

    Article  CAS  PubMed  Google Scholar 

  47. Pankow JF, Mader BT, Isabelle LM, Luo W, Pavlick A, Liang C. Conversion of Nicotine in tobacco smoke to its volatile and available free-base form through the action of gaseous ammonia. Environ Sci Technol. 1997;31(8):2428–33.

    Article  CAS  Google Scholar 

  48. Bunge AL, Persichetti JM, Payan JP. Explaining skin permeation of 2-butoxyethanol from neat and aqueous solutions. Int J Pharm. 2012;435(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  49. Bunge AL. Why skin permeation data from neat and aqueous solutions of 2-Buthoxythanol (BE) are not surprising. Perspective in Percutanous Penetration Poster. 2006.

  50. Megrab NA, Williams AC, Barry BW. Oestradiol permeation across human skin, silastic and snake skin membranes: the effects of ethanol/water co-solvent systems. Int J Pharm. 1995;116(1):101–12.

    Article  CAS  Google Scholar 

  51. Björklund S, Engblom J, Thuresson K, Sparr E. A water gradient can be used to regulate drug transport across skin. J Controlled Release. 2010;143(2):191–200.

    Article  Google Scholar 

  52. Zhang Q, Li P, Roberts MS. Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Controlled Release. 2011;154(1):50–7.

    Article  CAS  Google Scholar 

  53. Zhang Q, Grice JE, Li P, Jepps OG, Wang G-J, Roberts MS. Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm Res. 2009;26(8):1974–85.

    Article  CAS  PubMed  Google Scholar 

  54. Oliveira G, Hadgraft J, Lane ME. The role of vehicle interactions on permeation of an active through model membranes and human skin. Int J Cos Sci. 2012;34(6):536–45.

    Article  CAS  Google Scholar 

  55. Twist J, Zatz J. Influence of solvents on paraben permeation through idealized skin model membranes. J Cosmet Sci. 1986;37(6):429–44.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank to Australian National Health Medical Research Council for the financial research support, Dr. Simon Gunn for assistance in redrawing the figures and Dr Peng Li for his helpful comments. RK acknowledges Indonesian Directorate of Higher Degree of Education (DIKTI) for the scholarship. Professor Michael S Roberts would like to thank to Professor Annette Bunge for providing a copy her 2-butoxyethanol poster #24 presented at the 10th Perspectives in Percutaneous Penetration (PPP) conference, La Grande Motte, France, April 19–22, 2006 France and for our discussion on her findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuswahyuning, R., Roberts, M.S. Concentration Dependency in Nicotine Skin Penetration Flux from Aqueous Solutions Reflects Vehicle Induced Changes in Nicotine Stratum Corneum Retention. Pharm Res 31, 1501–1511 (2014). https://doi.org/10.1007/s11095-013-1256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1256-4

KEY WORDS

Navigation