Skip to main content
Log in

The Effect of Polymerization Method in Stereo-active Block Copolymers on the Stability of Polymeric Micelles and their Drug Release Profile

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of polymerization method on the stability and drug release properties of polymeric micelles formed using stereo-active block copolymers.

Methods

Diblock copolymers consisting of methoxy poly ethylene oxide (MePEO) and poly(lactide)s (PLA)s of different stereochemistry were synthesized by bulk or solution polymerization. Polymers and micelles were characterized for their chemical structure by 1H NMR, optical rotation by polarimetry, critical micellar concentration by fluorescence spectroscopy, thermal properties by differential scanning calorimetry, morphology by transmission electron microscopy and size as well as kinetic stability by dynamic light scattering. Release of encapsulated nimodipine from polymeric micelles at different levels of loading was also investigated.

Results

Solution polymerization yielded a higher degree of crystallinity for stereo-regular PLA blocks. Consequently, the related polymeric micelles were kinetically more stable than those prepared by bulk polymerization. At high drug loading levels, the release of nimodipine was more rapid from polymeric micelles with crystalline cores. At lower levels of drug loading, drug release was slower and independent of the stereochemistry of the core.

Conclusions

The results underline the effect of polymerization method in defining core crystallinity in stereoregular block copolymer micelles. It also shows the impact of core crystallinity on enhancing micellar stability and drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CMC:

Critical micellar concentration

DL:

Drug loading

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

DSC:

Differential scanning calorimetry

EE:

Encapsulation efficiency

MD:

Molecular dynamic

Mn:

Number average molecular weight

NMR:

Nuclear magnetic resonance spectroscopy

PDLA:

Poly(D-lactide)

PD/LLA:

Poly(D/L-lactide)

PDLLA:

50–50 poly(D,L-lactide)

PEG:

Poly ethylene glycol

PEO:

Poly ethylene oxide

PI:

Polydispersity index

PLA:

Poly lactide

PLLA:

Poly(L-lactide)

RAC:

Racemic

ROP:

Ring opening polymerization

SnO2 :

Stannous octoate (tin(II) bis(2-ethylhexanoate))

SDS:

Sodium dodecyl sulfate

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

References

  1. Xiong XB, Falamarzian A, Garg SM, Lavasanifar A. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Controlled Release. 2011;155(2):248–61.

    Article  CAS  Google Scholar 

  2. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.

    Article  CAS  PubMed  Google Scholar 

  3. Xiong XB, Binkhathlan Z, Molavi O, Lavasanifar A. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery. Acta Biomater. 2012;8(6):2017–33.

    Article  CAS  PubMed  Google Scholar 

  4. Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Controlled Release. 1993;24(1–3):119–32.

    Article  Google Scholar 

  5. Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet. 2008;47(10):619–34.

    Article  CAS  PubMed  Google Scholar 

  6. Inoue T, Chen G, Nakamae K, Hoffman AS. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J Controlled Release. 1998;51(2–3):221–9.

    Article  CAS  Google Scholar 

  7. Miller T, Breyer S, van Colen G, Mier W, Haberkorn U, Geissler S, et al. Premature drug release of polymeric micelles and its effects on tumor targeting. Int J Pharm. 2013;445(1–2):117–24.

    Article  CAS  PubMed  Google Scholar 

  8. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 2011;12(3):523–32.

    Article  CAS  PubMed  Google Scholar 

  9. Kang N, Perron ME, Prud’homme RE, Zhang Y, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett. 2005;5(2):315–9.

    Article  CAS  PubMed  Google Scholar 

  10. Agrawal SK, Sanabria-DeLong N, Coburn JM, Tew GN, Bhatia SR. Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers. J Controlled Release. 2006;112(1):64–71.

    Article  CAS  Google Scholar 

  11. Zhang J, Wang LQ, Wang H, Tu K. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Biomacromolecules. 2006;7(9):2492–500.

    Article  CAS  PubMed  Google Scholar 

  12. Hanggi D, Perrin J, Eicker S, Beseoglu K, Etminan N, Kamp MA, et al. Local delivery of nimodipine by prolonged-release microparticles-feasibility, effectiveness and dose-finding in experimental subarachnoid hemorrhage. PLoS One. 2012;7(9):e42597.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Patel S, Lavasanifar A, Choi P. Application of molecular dynamics simulation to predict the compatability between water-insoluble drugs and self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers. Biomacromolecules. 2008;9(11):3014–23.

    Article  CAS  PubMed  Google Scholar 

  14. Storey RF, Sherman JW. Kinetics and Mechanism of the Stannous Octoate-Catalyzed Bulk Polymerization of ε-Caprolactone. Macromolecules. 2002;35(5):1504–12.

    Article  CAS  Google Scholar 

  15. Thomas CM. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev. 2010;39(1):165–73. doi:10.1039/B810065A.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys. 1996;197(10):3483–99.

    Article  CAS  Google Scholar 

  17. Slivniak R, Domb AJ. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers. Biomacromolecules. 2002;3(4):754–60.

    Article  CAS  PubMed  Google Scholar 

  18. Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules. 1992;25(21):5719–23.

    Article  CAS  Google Scholar 

  19. Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL. Development of copolymers of poly(d, l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids and Surf B. 1999;16(1–4):161–71.

    Article  CAS  Google Scholar 

  20. Barz M, Arminan A, Canal F, Wolf F, Koynov K, Frey H, et al. P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. J Controlled Release. 2012;163(1):63–74.

    Article  CAS  Google Scholar 

  21. Petzetakis N, Dove AP, O’Reilly RK. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem Sci. 2011;2(5):955–60. doi:10.1039/C0SC00596G.

    Article  CAS  Google Scholar 

  22. Kelarakis A, Chaibundit C, Krysmann MJ, Havredaki V, Viras K, Hamley IW. Interactions of an anionic surfactant with poly(oxyalkylene) copolymers in aqueous solution. J Colloid Interface Sci. 2009;330(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  23. Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1–2):158–65.

    Article  CAS  PubMed  Google Scholar 

  24. Agatemor C, Shaver MP. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers. Biomacromolecules. 2013;14(3):699–708.

    Article  CAS  PubMed  Google Scholar 

  25. Ovitt TM, Coates GW. Stereoselective ring-opening polymerization of meso-lactide: Synthesis of syndiotactic poly(lactic acid). J Am Chem Soc. 1999;121(16):4072–3.

    Article  CAS  Google Scholar 

  26. Guo XD, Qian Y, Zhang CY, Nie SY, Zhang LJ. Can drug molecules diffuse into the core of micelles? Soft Matter. 2012;8(39):9989–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements And Disclosures

This study was supported by grants from Natural Science and Engineering Council of Canada (NSERC). A.L. also acknowledges support from Canadian Foundation for Innovation (CFI) and Alberta Advanced Education and Technology (AAET) for the infrastructure used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Lavasanifar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleymani Abyaneh, H., Vakili, M.R. & Lavasanifar, A. The Effect of Polymerization Method in Stereo-active Block Copolymers on the Stability of Polymeric Micelles and their Drug Release Profile. Pharm Res 31, 1485–1500 (2014). https://doi.org/10.1007/s11095-013-1255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1255-5

KEY WORDS

Navigation