Skip to main content

Advertisement

Log in

Targeting Tamoxifen to Breast Cancer Xenograft Tumours: Preclinical Efficacy of Folate-Attached Nanoparticles Based on Alginate-Cysteine/Disulphide-Bond-Reduced Albumin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In vivo evaluation of tamoxifen (TMX)-loaded folate-targeted nanoparticles prepared from a mixture of disulphide bond reduced bovine serum albumin (BSA-SH) and alginate-cysteine (ALG-CYS) as targeted delivery systems of TMX to tumour tissues.

Methods

TMX in solution, TMX included into folate-nanoparticles and their non-targeted analogues were intravenously administered to nude mice carrying xenograft MCF-7 tumours. The antitumor activity of these systems was characterized in terms of tumour growth rate, histological and immunohistochemical analysis of tumour tissues and TMX biodistribution.

Results

TMX-folate-attached nanoparticles caused tumour remission whereas free TMX or TMX-non-targeted nanoparticles could only stop the tumour development. The histological evaluation of tumour tissues showed that those treated with folate-conjugated systems presented the most quiescent and disorganized structures. Additionally, the lowest concentrations of TMX accumulated in non-targeted organs were also found after administration of the drug using this formulation.

Conclusions

This study demonstrated that TMX-loaded folate-targeted systems were capable of reaching tumour sites, so enhancing the in vivo anticancer action of TMX, and allowing a new administration route to be applied and some of the current TMX therapy problems to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALG-CYS:

Alginate-cysteine conjugate

ANOVA:

One way analysis of variance

BSA:

Bovine serum albumin

BSA-SH:

Disulphide bond reduced bovine serum albumin

B-50-50 NP:

Nanoparticles based on 50% ALG-CYS and 50% BSA-SH

B-50-50-FOL NP:

Folate-conjugated nanoparticles based on 50% ALG-CYS and 50% BSA-SH

DCC:

N,N′-dicyclohexylcarbodiimide

DMSO:

Dimethyl sulphoxide

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Foetal bovine serum

i.v:

Intravenous administration

KCl:

Potassium chloride

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NP:

Nanoparticles

PBS:

Phosphate buffered saline

s.c:

Subcutaneous administration

TMX- B-50-50-FOL NP:

Tamoxifen-loaded folate-conjugated nanoparticles based on 50% ALG-CYS and 50% BSA-SH

TMX- B-50-50 NP:

Tamoxifen-loaded nanoparticles based on 50% ALG-CYS and 50% BSA-SH

4-OH-TMX:

4-hydroxytamoxifen

References

  1. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cazzaniga M, Bonanni B. Breast cancer chemoprevention: old and new approaches. J Biomed Biotechnol. 2012;2012:985620.

    PubMed Central  PubMed  Google Scholar 

  4. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  CAS  PubMed  Google Scholar 

  5. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54(5):675–93.

    Article  CAS  PubMed  Google Scholar 

  6. Gao W, Xiang B, Meng TT, Liu F, Qi XR. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials. 2013;34(16):4137–49.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez A, Benito-Miguel M, Iglesias I, Teijon JM, Blanco MD. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J Biomed Mater Res A. 2012;100A(6):1467–76.

    Article  CAS  Google Scholar 

  8. Martínez A, Iglesias I, Lozano R, Teijón JM, Blanco MD. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr Polym. 2011;83(3):1311–21.

    Article  Google Scholar 

  9. Martinez A, Muniz E, Iglesias I, Teijon JM, Blanco MD. Enhanced preclinical efficacy of tamoxifen developed as alginate-cysteine/disulfide bond reduced albumin nanoparticles. Int J Pharm. 2012;436(1–2):574–81.

    Article  CAS  PubMed  Google Scholar 

  10. Martínez A, Olmo R, Iglesias I, Teijon JM, Blanco MD. Folate-targeted nanoparticles based on albumin/alginate mixtures as controlled release systems of tamoxifen. Synthesis and iIn vitro characterization Pharmaceutical Research. 2013; Accepted (In Press).

  11. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem. 1994;269(5):3198–204.

    CAS  PubMed  Google Scholar 

  12. Behrens D, Gill JH, Fichtner I. Loss of tumourigenicity of stably ERbeta-transfected MCF-7 breast cancer cells. Mol Cell Endocrinol. 2007;274(1–2):19–29.

    Article  CAS  PubMed  Google Scholar 

  13. Humason GL, editor. Animal Tissue Techniques. 4th ed. New York 1979.

  14. Patel VR, Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res. 1996;13(4):588–93.

    Article  CAS  PubMed  Google Scholar 

  15. Kisanga ER, Gjerde J, Schjott J, Mellgren G, Lien EA. Tamoxifen administration and metabolism in nude mice and nude rats. J Steroid Biochem Mol Biol. 2003;84(2–3):361–7.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy JA, Low PS. Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Syst. 1998;15(6):587–627.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KH, Ward BA, Desta Z, Flockhart DA, Jones DR. Quantification of tamoxifen and three metabolites in plasma by high-performance liquid chromatography with fluorescence detection: application to a clinical trial. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;791(1–2):245–53.

    Article  CAS  PubMed  Google Scholar 

  18. Shin SC, Choi JS, Li X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharm. 2006;313(1–2):144–9.

    Article  CAS  PubMed  Google Scholar 

  19. Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, et al. Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst. 2004;96(6):456–65.

    Article  CAS  PubMed  Google Scholar 

  20. Osborne CK, Hobbs K, Clark GM. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 1985;45(2):584–90.

    CAS  PubMed  Google Scholar 

  21. Laine AL, Adriaenssens E, Vessieres A, Jaouen G, Corbet C, Desruelles E, et al. The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials. 2013;34(28):6949–56.

    Article  CAS  PubMed  Google Scholar 

  22. Haran EF, Maretzek AF, Goldberg I, Horowitz A, Degani H. Tamoxifen enhances cell death in implanted MCF7 breast cancer by inhibiting endothelium growth. Cancer Res. 1994;54(21):5511–4.

    CAS  PubMed  Google Scholar 

  23. Zhao P, Wang H, Yu M, Liao Z, Wang X, Zhang F, et al. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;81(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  24. Hao HQ, Ma QM, Huang C, He F, Yao P. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharmaceut. 2013;444(1–2):77–84.

    Article  CAS  Google Scholar 

  25. Fernandez SV, Robertson FM, Pei J, Aburto-Chumpitaz L, Mu Z, Chu K, et al. Inflammatory breast cancer (IBC): clues for targeted therapies. Breast Cancer Res Treat. 2013 Jun 21.

  26. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, et al. Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One. 2010;5(3):e9832.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bani D, Flagiello D, Poupon MF, Nistri S, Poirson-Bichat F, Bigazzi M, et al. Relaxin promotes differentiation of human breast cancer cells MCF-7 transplanted into nude mice. Virchows Arch. 1999;435(5):509–19.

    Article  CAS  PubMed  Google Scholar 

  28. Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, Koh W, et al. Oral administration of penta-O-galloyl-beta-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis. 2011;32(6):804–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M, et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia. 2011;13(4):309–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Pathmanathan N, Balleine RL. Ki67 and proliferation in breast cancer. J Clin Pathol. 2013;66(6):512–6.

    Article  CAS  PubMed  Google Scholar 

  31. Wohlfart S, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Gelperina S, et al. Increased numbers of injections of doxorubicin bound to nanoparticles lead to enhanced efficacy against rat glioblastoma 101/8. J Nanoneurosci. 2009;1(2):144–51.

    Article  CAS  Google Scholar 

  32. Arias JL, Reddy LH, Couvreur P. Superior preclinical efficacy of gemcitabine developed as chitosan nanoparticulate system. Biomacromolecules. 2011;12(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  33. Cotreau MM, von Moltke LL, Harmatz JS, Greenblatt DJ. Molecular and pharmacokinetic evaluation of rat hepatic and gastrointestinal cytochrome p450 induction by tamoxifen. Pharmacology. 2001;63(4):210–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wilking N, Appelgren LE, Carlstrom K, Pousette A, Theve NO. The distribution and metabolism of 14C-labelled tamoxifen in spayed female mice. Acta Pharmacol Toxicol (Copenh). 1982;50(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  35. Bend JR, Serabjit-Singh CJ, Philpot RM. The pulmonary uptake, accumulation, and metabolism of xenobiotics. Annu Rev Pharmacol Toxicol. 1985;25:97–125.

    Article  CAS  PubMed  Google Scholar 

  36. Gao WL, Zhang LP, Feng LM. Comparative study of transvaginal ultrasonographic and diagnostic hysteroscopic findings in postmenopausal breast cancer patients treated with tamoxifen. Chin Med J (Engl). 2011;124(15):2335–9.

    PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors are grateful to Dr. von Kobbe (Chimera Pharma of Bionostra Group) for the gift of MCF7 cells. The financial support of the Ministerio de Ciencia e Innovación of Spain (FIS PS09/01513 and MAT2010-21509-C03-03), and the FPI grant from UCM to A. Martínez are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, A., Muñiz, E., Teijón, C. et al. Targeting Tamoxifen to Breast Cancer Xenograft Tumours: Preclinical Efficacy of Folate-Attached Nanoparticles Based on Alginate-Cysteine/Disulphide-Bond-Reduced Albumin. Pharm Res 31, 1264–1274 (2014). https://doi.org/10.1007/s11095-013-1247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1247-5

Key words

Navigation