Skip to main content

Advertisement

Log in

Investigation of the Influence of Nephropathy on Monoclonal Antibody Disposition: A Pharmacokinetic Study in a Mouse Model of Diabetic Nephropathy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study employed a mouse model to evaluate the effects of diabetic nephropathy on the pharmacokinetics of 8C2, a murine monoclonal antibody (mAb).

Methods

Streptozotocin (STZ) was administered to mice to induce diabetic nephropathy (125 mg/kg/day × 2). Mice were grouped (n = 8–10) based on time after STZ-treatment (control, 1, 2, 3, 4, or 6 weeks), and injected intravenously with 10 mg/kg 8C2. Blood samples were collected up to 7 days, and 8C2 plasma concentrations were determined via immunoassay. Inulin clearance and urinary albumin excretion rate (UAE) were determined to assess renal function.

Results

UAE, inulin clearance, and 8C2 clearance increased significantly following STZ. Comparing control and 6 week STZ-treatment groups, UAE and inulin clearance increased from 25.7 ± 3.3 to 99.3 ± 13.7 μg/day, and from 421 ± 31 to 584 ± 78 μl/min. 8C2 clearance increased from 121 ± 12.5 to 228 ± 61 μl/hr/kg (p < 0.01). 8C2 clearance was highly correlated with UAE (r2: 0.731). Inclusion of UAE as a covariate in population modeling explained significant residual variability in 8C2 clearance.

Conclusions

The clearance of 8C2 increased significantly in STZ-treated mice. Population pharmacokinetic modeling suggests that UAE has potential for use in predicting mAb clearance in subjects with diabetic nephropathy, possibly assisting in the individualization of mAb dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CL:

systemic clearance

GFR:

glomerular filtration rate

IgG:

immunoglobulin G

mAb:

monoclonal antibody

STZ:

streptozotocin

UAE:

urinary albumin excretion rate

REFERENCES

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  2. Reichert JM. Metrics for antibody therapeutics development. MAbs. 2010;2:695–700.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol. 2002;3:944–55.

    Article  CAS  PubMed  Google Scholar 

  4. McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci. 2001;114:1591–8.

    CAS  PubMed  Google Scholar 

  5. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol. 2001;62:93–105.

    Article  CAS  PubMed  Google Scholar 

  6. Praetor A, Ellinger I, Hunziker W. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci. 1999;112(Pt 14):2291–9.

    CAS  PubMed  Google Scholar 

  7. Ward ES, Zhou J, Ghetie V, Ober RJ. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol. 2003;15:187–95.

    Article  CAS  PubMed  Google Scholar 

  8. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93:5512–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity. 1994;1:303–15.

    Article  CAS  PubMed  Google Scholar 

  10. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabolism. Nature. 1964;203:1352–4.

    Article  CAS  PubMed  Google Scholar 

  11. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    Article  CAS  PubMed  Google Scholar 

  12. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–52.

    Article  CAS  PubMed  Google Scholar 

  13. Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem. 2012;3:73–92.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:633–59.

    Article  CAS  PubMed  Google Scholar 

  15. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.

    Article  CAS  PubMed  Google Scholar 

  16. Crommelin DJA, Sindelar RD. Pharmaceutical biotechnology: an introduction for pharmacists and pharmaceutical scientists. London; New York: Routledge; 2002.

    Google Scholar 

  17. Woo KT, Lau YK. Proteinuria: clinical significance and basis for therapy. Singap Med J. 2001;42:385–9.

    CAS  Google Scholar 

  18. Bakoush O, Tencer J, Tapia J, Rippe B, Torffvit O. Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int. 2002;61:203–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lemley KV, Blouch K, Abdullah I, Boothroyd DB, Bennett PH, Myers BD, et al. Glomerular permselectivity at the onset of nephropathy in type 2 diabetes mellitus. J Am Soc Nephrol. 2000;11:2095–105.

    CAS  PubMed  Google Scholar 

  20. Mistry K, Kalia K. Non enzymatic glycosylation of IgG and their urinary excretion in patients with diabetic nephropathy. Indian J Clin Biochem. 2009;24:159–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49:162–75.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Lu Q, Balthasar JP. Mathematical modeling of topotecan pharmacokinetics and toxicodynamics in mice. J Pharmacokinet Pharmacodyn. 2007;34:829–47.

    Article  PubMed  Google Scholar 

  23. Shah D. Pharmacokinetic strategies to improve the safety and efficacy of intraperitoneal chemotherapy, Pharmaceutical Sciences, Vol. Doctor of Philosophy, University at Buffalo 2010, p. 585.

  24. Qi Z, Whitt I, Mehta A, Jin J, Zhao M, Harris RC, et al. Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol. 2004;286:F590–6.

    Article  CAS  PubMed  Google Scholar 

  25. Lixsoft. Modelling & Simulation for Drug Development. http://www.monolix.org/ (accessed 2013 March 12 2013).

  26. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes. 2005;54:2628–37.

    Article  CAS  PubMed  Google Scholar 

  27. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–76.

    Article  PubMed  Google Scholar 

  28. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. New Engl J Med. 1999;341:1127–33.

    Article  CAS  PubMed  Google Scholar 

  29. Young BA, Maynard C, Boyko EJ. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care. 2003;26:2392–9.

    Article  PubMed  Google Scholar 

  30. Tarnow L, Rossing P, Nielsen FS, Fagerudd JA, Poirier O, Parving HH. Cardiovascular morbidity and early mortality cluster in parents of type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2000;23:30–3.

    Article  CAS  PubMed  Google Scholar 

  31. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    Article  CAS  PubMed  Google Scholar 

  32. Herman WH, Zimmet P. Type 2 diabetes: an epidemic requiring global attention and urgent action. Diabetes Care. 2012;35:943–4.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.

    Article  PubMed  Google Scholar 

  34. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28.

    Article  PubMed  Google Scholar 

  35. Bakris GL. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc. 2011;86:444–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290:F214–22.

    Article  CAS  PubMed  Google Scholar 

  37. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49:1399–408.

    Article  CAS  PubMed  Google Scholar 

  38. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transplant. 2004;19:2987–96.

    Article  CAS  PubMed  Google Scholar 

  39. Guyton AC, Hall JE. Textbook of medical physiology. Philadelphia: Elsevier Saunders; 2006.

    Google Scholar 

  40. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4:444–52.

    Article  CAS  PubMed  Google Scholar 

  41. McQuarrie EP, Shakerdi L, Jardine AG, Fox JG, Mackinnon B. Fractional excretions of albumin and IgG are the best predictors of progression in primary glomerulonephritis. Nephrol Dial Transplant. 2011;26:1563–9.

    Article  CAS  PubMed  Google Scholar 

  42. Narita T, Fujita H, Koshimura J, Meguro H, Kitazato H, Shimotomai T, et al. Glycemic control reverses increases in urinary excretions of immunoglobulin G and ceruloplasmin in type 2 diabetic patients with normoalbuminuria. Horm Metab Res. 2001;33:370–8.

    Article  CAS  PubMed  Google Scholar 

  43. Deckert T, Feldt-Rasmussen B, Djurup R, Deckert M. Glomerular size and charge selectivity in insulin-dependent diabetes mellitus. Kidney Int. 1988;33:100–6.

    Article  CAS  PubMed  Google Scholar 

  44. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38:1933–53.

    CAS  PubMed  Google Scholar 

  45. Meneton P, Ichikawa I, Inagami T, Schnermann J. Renal physiology of the mouse. Am J Physiol Renal Physiol. 2000;278:F339–51.

    CAS  PubMed  Google Scholar 

  46. Meyer MH, Meyer Jr RA, Gray RW, Irwin RL. Picric acid methods greatly overestimate serum creatinine in mice: more accurate results with high-performance liquid chromatography. Anal Biochem. 1985;144:285–90.

    Article  CAS  PubMed  Google Scholar 

  47. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004;27:S79–83.

    Article  PubMed  Google Scholar 

  48. Fervenza FC, Cosio FG, Erickson SB, Specks U, Herzenberg AM, Dillon JJ, et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 2008;73:117–25.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by a grant from the Center for Protein Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Balthasar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engler, F.A., Zheng, B. & Balthasar, J.P. Investigation of the Influence of Nephropathy on Monoclonal Antibody Disposition: A Pharmacokinetic Study in a Mouse Model of Diabetic Nephropathy. Pharm Res 31, 1185–1193 (2014). https://doi.org/10.1007/s11095-013-1241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1241-y

KEY WORDS

Navigation