Skip to main content
Log in

Microneedle-Assisted Permeation of Lidocaine Carboxymethylcellulose with Gelatine Co-polymer Hydrogel

Pharmaceutical Research Aims and scope Submit manuscript

Cite this article

Abstract

Purpose

Lidocaine hydrochloride (LidH) was formulated in sodium carboxymethyl cellulose/ gelatine (NaCMC/GEL) hydrogel and a ‘poke and patch’ microneedle delivery method was used to enhance permeation flux of LidH.

Methods

The microparticles were formed by electrostatic interactions between NaCMC and GEL macromolecules within a water/oil emulsion in paraffin oil and the covalent crosslinking was by glutaraldehyde. The GEL to NaCMC mass ratio was varied between 1.6 and 2.7. The LidH encapsulation yield was 1.2 to 7% w/w. LidH NaCMC/GEL was assessed for encapsulation efficiency, zeta potential, mean particle size and morphology. Subsequent in vitro skin permeation studies were performed via passive diffusion and microneedle assisted permeation of LidH NaCMC/GEL to determine the maximum permeation rate through full thickness skin.

Results

LidH 2.4% w/w NaCMC/GEL 1:1.6 and 1:2.3 respectively, possessed optimum zeta potential. LidH 2.4% w/w NaCMC/GEL 1:2.3 and 1:2.7 demonstrate higher pseudoplastic behaviour. Encapsulation efficiency (14.9–17.2%) was similar for LidH 2.4% w/w NaCMC/GEL 1:1.6–1:2.3. Microneedle assisted permeation flux was optimum for LidH 2.4% w/w NaCMC/GEL 1:2.3 at 6.1 μg/ml/h.

Conclusion

LidH 2.4% w/w LidH NaCMC/GEL 1:2.3 crossed the minimum therapeutic drug threshold with microneedle skin permeation in less than 70 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smith BC, Wilson AH. Topical versus injectable analgesics in simple laceration repair: An integrative review. JNP. 2013;9(6):374–80.

    Google Scholar 

  2. Hogan ME, VanderVaart S, Permapaladas K, Márcio M, Einarson TR, Taddio A. Systematic review and meta-analysis of the effect of warming local anesthetics on injection pain. Ann of Emerg Med. 2011;58(1):86–98. e1.

    Article  Google Scholar 

  3. Capellan O, Hollander JE. Management of lacerations in the emergency department. Emerg Med Clin North Am. 2003;21(1):205–31.

    Article  PubMed  Google Scholar 

  4. Bekhit MH. The essence of analgesia and anagesics. Lidocaine for neural blockade. Cambridge University Press; 2011. p. 280–281.

  5. Chale S, Singer AJ, Marchini S, McBride MJ, Kennedy D. Digital versus local anesthesia for finger lacerations: A randomized controlled trial. Acad Emerg Med. 2006;13(10):1046–50.

    Article  PubMed  Google Scholar 

  6. Pregerson DB. Suturing and wound closure: How to achieve optimal healing. Consultant. 2007;47(12):1–7.

    Google Scholar 

  7. Braga D, Chelazzi L, Greprioni F, Dichiaranta E, Chierotti MR, Gobetto R. Molecular salts of anaesthetic lidocaine with dicarboxylic acids: Solid-state properties and a combined structural and spectroscopic study. Cryst Growth Des. 2013;13:2564–72.

    Article  CAS  Google Scholar 

  8. Conroy PH, O’Rourke J. Tumescent anaesthesia. The Surgeon. 2013;11:210–21.

    Article  PubMed  Google Scholar 

  9. Xia Y, Chen E, Tibbits DL, Reilley TE, McSweeney TD. Comparison of effect of lidocaine hydrochloride, buffered lidocaine, diphenhydramine, and normal saline after intradermal injection. J Clin Anesth. 2002;14:339–43.

    Article  CAS  PubMed  Google Scholar 

  10. Cepeda MS, Tzortzopoulou A, Thackrey M, Hudcova J, Gandhi PA, Schumann R. Adjusting the pH of lidocaine for reducing pain on injection. Cochrane Database of Systematic Reviews 12. 2010. doi:10.1002/14651858.

  11. Columb MO, Ramsaran R. Local anaesthetic agents. Anaesthe Intensive Care Med. 2010;11(3):113–7.

    Article  Google Scholar 

  12. Buhus G, Poap M, Desbrieres J. Hydrogels based on carboxymethylcellulose and gelatin for inclusion and release of chloramphenicol. J Bioact Compat Pol. 2009;24:525–45.

    Article  CAS  Google Scholar 

  13. Mu C, Guo J, Li X, Lin W, Lin D. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloid. 2012;27(1):22–9.

    Article  CAS  Google Scholar 

  14. Becker DE, Reed KL. Local anaesthetics: Review of pharmacological consideration. Anesth Prog. 2012;59(2):90–102.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013. Article in press - doi:10.1016/j.addr.2013.04.016

  16. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges (feature article). Polym. 2008;49(8):1993–2007.

    Article  CAS  Google Scholar 

  17. Matricardi P, Meo CD, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 2013. Article in press – doi:10.1016/j.addr.2013.04.002

  18. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64(S):49–60.

    Article  Google Scholar 

  19. Patel SR, Lin ASP, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Al-Qallaf B, Das DB. Optimization of square microneedle arrays for increasing drug permeability in skin. Chem Eng Sci. 2008;63(9):2523–35.

    Article  CAS  Google Scholar 

  21. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–5.

    Article  CAS  PubMed  Google Scholar 

  22. Donnelly RF, Singh TRR, Woolfson D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Davis SP, Prausnitz MR, Allen MG. Fabrication and characterization of laser micromachined hollow microneedles. Transducers. 2003:1435–1438.

  24. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012;29(1):170–7.

    Article  PubMed  Google Scholar 

  25. Ito Y, Ohta J, Imada K, Akamatsu S, Tsuchida N, Inoue G, Inoue N, Takada K. Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. J Drug Target. 2013:1–6. doi:10.3109/1061186X.2013.811510.

  26. Nayak A, Das DB. Potential of biodegradable microneedles as a transdermal delivery vehicle for lidocaine. Biotechnol Lett. 2013. doi:10.1007/s10529-013-1217-3.

  27. Küchler S, Strüver K, Wolfgang F. Reconstructed skin models as emerging tools for drug absorption studies. Expert Opin Drug Met. 2013. doi:10.1517/17425255.2013.816284

  28. Karadzovska D, Brooks JD, Monteiro-Riviere NA, Riviere JE. Predicting skin permeability from complex vehicles. Adv Drug Dev Rev. 2013;65:265–77.

    Article  CAS  Google Scholar 

  29. Van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  PubMed  Google Scholar 

  30. Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm. 2013;444(1–2):96–102.

    Article  CAS  PubMed  Google Scholar 

  31. Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci. 2013:1–9. doi:10.1002/jps.23662.

  32. Auner BG, Valenta C. Influence of phloretin on the skin permeation of lidocaine from semisolid preparations. Eur J Pharm Biopharm. 2004;57(2):307–12.

    Article  CAS  Google Scholar 

  33. Zhao X, Liu JP, Zhang X, Li Y. Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int J Pharm. 2006;327(1–2):58–64.

    Article  CAS  PubMed  Google Scholar 

  34. Kang L, Jun HW, McCall JW. Physicochemical studies of lidocaine menthol binary systems for enhanced membrane transport. Int J Pharm. 2000;206(1–2):35–42.

    Article  CAS  PubMed  Google Scholar 

  35. Poet TS, McDougal JN. Skin absorption and human risk assessment. Chem-Biol Interact. 2002;140(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  36. Naidu BVK, Paulson AT. A new method for the preparation of gelatin nanoparticles encapsulation and drug release characteristics. J Appl Polym Sci. 2011;121(6):3495–500.

    Article  CAS  Google Scholar 

  37. Al-Kahtani AA, Sherigara BS. Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide). J Mater Sci: Mater Med. 2009;20(7):1437–45.

    CAS  Google Scholar 

  38. Marquez AL. Water in oil (w/o) and double (w/o/w) emulsions prepared with spans: microstructure, stability, and rheology. Colloid Polym Sci. 2007;285(10):1119–28.

    Article  CAS  Google Scholar 

  39. El-Mahrab-Robert M, Rosilio V, Bolzinger MA, Chaminade P, Grossiord JL. Assessment of oil polarity: Comparison of evaluation methods. Int J Pharm. 2008;348(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  40. Chikh L, Delhorbe V, Fichet O. (Semi-) Interpenetrating polymer networks as fuel cell membranes. J Membrane Sci. 2011;368(1-2):1–17.

    Article  CAS  Google Scholar 

  41. Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW. Glossary of basic terms in polymer science. Pure Appl Chem. 1996;68(12):2304–5.

    Article  Google Scholar 

  42. Kajjari PB, Manjeshwar LS, Aminabhavi TM. Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res. 2011;50(13):7833–40.

    Article  CAS  Google Scholar 

  43. Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohyd Polym. 2006;65(3):243–52.

    Article  CAS  Google Scholar 

  44. Schramm LL. Emulsions, foams, and suspensions. Wiley-VCH, 2005.128–130

  45. Riddick TM. Control of stability through zeta potential. New York: Zeta Meter Inc; 1968.

    Google Scholar 

  46. Koul V, Mohamed R, Kuckling D, Adler HJP, Choudhary V. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: Synthesis and characterization. Colloid Surface B. 2011;83(2):204–13.

    Article  CAS  Google Scholar 

  47. Stenson RE, Constantino RT, Harrison DC. Interrelationships of hepatic blood flow, cardiac output, and blood levels of lidocaine in man. Circulation. 1971;43:205–11.

    Article  CAS  PubMed  Google Scholar 

  48. Greco FA. Therapeutic drug levels. MedlinePlus. A service of the U.S. National Library of Medicine; 2011. Available from: http://www.nlm.nih.gov/medlineplus/ency/article/003430.htm. [Website] Accessed: 22/04/13.

  49. Todo H, Kimurae E, Yasuno H, Tokudome Y, Hashimoto F, Ikarashi Y, et al. Permeation pathway of macromolecules and nanospheres through skin. Biol Pharm Bull. 2010;33(8):1394–9.

    Article  CAS  PubMed  Google Scholar 

  50. Victoria Klang V, Schwarz JC, Haberfeld S, Xiao P, Wirth M, Valenta C. Skin integrity testing and monitoring of in vitro tape stripping by capacitance-based sensor imaging. Skin Res Technol. 2013;19:e259–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta B. Das.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nayak, A., Das, D.B. & Vladisavljević, G.T. Microneedle-Assisted Permeation of Lidocaine Carboxymethylcellulose with Gelatine Co-polymer Hydrogel. Pharm Res 31, 1170–1184 (2014). https://doi.org/10.1007/s11095-013-1240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1240-z

Key words

Navigation