Advertisement

Pharmaceutical Research

, Volume 31, Issue 5, pp 1099–1105 | Cite as

Improving the Stability and Activity of Oral Therapeutic Enzymes—Recent Advances and Perspectives

  • Gregor Fuhrmann
  • Jean-Christophe Leroux
Perspective

Abstract

Exogenous, orally-administered enzymes are currently in clinical use or under development for the treatment of pathologies, such as celiac disease and phenylketonuria. However, the administration of therapeutic enzymes via the oral route remains challenging due to potential inactivation of these fragile macromolecular entities in the harsh environment of the gastrointestinal tract. Enzymes are particularly sensitive because both proteolysis and unfolding can lead to their inactivation. Current efforts to overcome these shortcomings involve the application of gastro-resistant delivery systems and the modification of enzyme structures by polymer conjugation or protein engineering. This perspective manuscript reviews and critically discusses recent progress in the oral delivery of therapeutic enzymes, whose substrate is localized in the gastrointestinal tract.

KEY WORDS

celiac disease drug therapy pancreas PEG 

Notes

Acknowledgments and Disclosures

This work was supported by the Swiss National Science Foundation (310030_135732).

References

  1. 1.
    Fuhrmann G, Leroux J-C. In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2011;108:9032–7.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Brannigan JA, Wilkinson AJ. Protein engineering 20 years on. Nat Rev Mol Cell Biol. 2002;3:964–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Regan PT, Malagelada J-R, DiMagno EP, Glanzman SL, Go VLW. Comparative effects of antacids, cimetidine and enteric coating on the therapeutic response to oral enzymes in severe pancreatic insufficiency. New Engl J Med. 1977;297:854–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.PubMedCrossRefGoogle Scholar
  6. 6.
    Leipner J, Saller R. Systemic enzyme therapy in oncology—effect and mode of action. Drugs. 2000;59:769–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release. 2012;162:56–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom. 2008;22:1041–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel. 2008;21:699–707.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Imrie CW, Connett G, Hall RI, Charnley RM. Enzyme supplementation in cystic fibrosis, chronic pancreatitis, pancreatic and periampullary cancer. Aliment Pharmacol Ther. 2010;32:1–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Domínguez–Muñoz JE. Chronic pancreatitis and persistent steatorrhea: what is the correct dose of enzymes. Clin Gastroenterol Hepatol. 2011;9:541–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Graham ML. Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev. 2003;55:1293–302.PubMedCrossRefGoogle Scholar
  13. 13.
    Schlesinger N, Yasothan U, Kirkpatrick P. Pegloticase. Nat Rev Drug Discov. 2011;10:17–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Harms H-K, Bertele-Harms R-M, Bruer-Kleis D. Enzyme-substitution therapy with the yeast saccharomyces cerevisiae in congenital sucrase-isomaltase deficiency. New Engl J Med. 1987;316:1306–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Treem WR, McAdams L, Stanford L, Kastoff G, Justinich C, Hyams J. Sacrosidase therapy for congenital sucrase-isomaltase deficiency. J Pediatr Gastroenterol Nutr. 1999;28:137–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Treem WR, Ahsan N, Sullivan B, Rossi T, Holmes R, Fitzgerald J, et al. Evaluation of liquid yeast-derived sucrase enzyme replacement in patients with sucrase-isomaltase deficiency. Gastroenterology. 1993;105:1061–8.PubMedGoogle Scholar
  17. 17.
    Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I. Identification of a variant associated with adult-type hypolactasia. Nat Genet. 2002;30:233–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Di Stefano M, Veneto G, Malservisi S, Cecchetti L, Minguzzi L, Strocchi A, et al. Lactose malabsorption and intolerance and peak bone mass. Gastroenterology. 2002;122:1793–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Suarez FL, Savaiano DA, Levitt MD. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. New Engl J Med. 1995;333:1–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosado JL, Solomons NW, Lisker R, Bourges H. Enzyme replacement therapy for primary adult lactase deficiency. Effective reduction of lactose malabsorption and milk intolerance by direct addition of beta-galactosidase to milk at mealtime. Gastroenterology. 1984;87:1072–82.PubMedGoogle Scholar
  22. 22.
    Kolars JC, Levitt MD, Aouji M, Savaiano DA. Yogurt—an autodigesting source of lactose. New Engl J Med. 1984;310:1–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Suarez FL, Savaiano DA, Levitt MD. The treatment of lactose intolerance. Aliment Pharmacol Ther. 1995;9:589–97.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Connell S, Walsh G. Physicochemical characteristics of commercial lactases relevant to their application in the alleviation of lactose intolerance. Appl Biochem Biotechnol. 2006;134:179–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu M, Tirino P, Radivojevic M, Phillips D, Gibson M, Leroux J-C, et al. Molecular sieving on the surface of a protein provides protection without loss of activity. Adv Funct Mater. 2012;23:2007–15.CrossRefGoogle Scholar
  26. 26.
    Turner KM, Pasut G, Veronese FM, Boyce A, Walsh G. Stabilization of a supplemental digestive enzyme by post-translational engineering using chemically-activated polyethylene glycol. Biotechnol Lett. 2011;33:617–21.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Connell S, Walsh G. A novel acid-stable, acid-active beta-galactosidase potentially suited to the alleviation of lactose intolerance. Appl Microbiol Biotechnol. 2010;86:517–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang H, Luo H, Bai Y, Wang Y, Yang P, Shi P, et al. An acidophilic beta-galactosidase from bispora sp MEY-1 with high lactose hydrolytic activity under simulated gastric conditions. J Agric Food Chem. 2009;57:5535–41.PubMedCrossRefGoogle Scholar
  29. 29.
    DiMagno EP, Go VLW, Summerskill WHJ. Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. New Engl J Med. 1973;288:813–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. New Engl J Med. 2005;352:1992–2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Fieker A, Philpott J, Armand M. Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol. 2011;4:55–73.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hardt PD, Ewald N. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes? Exp Diabetes Res. 2011. doi: 10.1155/2011/761950.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Leeds JS, Oppong K, Sanders DS. The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol. 2011;8:405–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Leeds JS, Hopper AD, Hurlstone DP, Edwards SJ, McAlindon ME, Lobo AJ, et al. Is exocrine pancreatic insufficiency in adult coeliac disease a cause of persisting symptoms? Aliment Pharmacol Ther. 2007;25:265–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Evans KE, Leeds JS, Morley S, Sanders DS. Pancreatic insufficiency in adult celiac disease: do patients require long-term enzyme supplementation? Dig Dis Sci. 2010;55:2999–3004.PubMedCrossRefGoogle Scholar
  36. 36.
    Carroccio A, Guarino A, Zuin G, Verghi F, Berni Canani R, Fontana M, et al. Efficacy of oral pancreatic enzyme therapy for the treatment of fat malabsorption in HIV-infected patients. Aliment Pharmacol Ther. 2001;15:1619–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Aloulou A, Puccinelli D, Sarles J, Laugier R, Leblondt Y, Carriere F. In vitro comparative study of three pancreatic enzyme preparations: dissolution profiles, active enzyme release and acid stability. Aliment Pharmacol Ther. 2008;27:283–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Domínguez–Muñoz JE, Iglesias–García J, Vilariño–Insua M, Iglesias–Rey M. 13C-mixed triglyceride breath test to assess oral enzyme substitution therapy in patients with chronic pancreatitis. Clin Gastroenterol Hepatol. 2007;5:484–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang H, Hagedorn J, Svendsen A, Borch K, Otzen DE. Variant of the Thermomyces lanuginosus lipase with improved kinetic stability: a candidate for enzyme replacement therapy. Biophys Chem. 2013;172:43–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Duncan R, Gilbert HRP, Carbajo RJ, Vicent MJ. Polymer masked-unmasked protein therapy. 1. bioresponsive dextrin-trypsin and -melanocyte stimulating hormone conjugates designed for alpha-amylase activation. Biomacromolecules. 2008;9:1146–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Pinier M, Fuhrmann G, Verdu E, Leroux J-C. Prevention measures and exploratory pharmacological treatments of celiac disease. Am J Gastroenterol. 2010;105:2551–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Rashtak S, Murray JA. Coeliac disease, new approaches to therapy. Aliment Pharmacol Ther. 2012;35:768–81.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Tack GJ, Verbeek WHM, Schreurs MWJ, Mulder CJJ. The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat Rev Gastroenterol Hepatol. 2010;7:204–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Biagi F, Corazza GR. Mortality in celiac disease. Nat Rev Gastroenterol Hepatol. 2010;7:158–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Catassi C, Fasano A. Celiac disease. Curr Opin Gastroenterol. 2008;24:687–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Pinier M, Fuhrmann G, Galipeau HJ, Rivard N, Murray JA, David CS, et al. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology. 2012;142:316–325.e312.PubMedCrossRefGoogle Scholar
  47. 47.
    Stoven S, Murray JA, Marietta E. Celiac disease: advances in treatment via gluten modification. Clin Gastroenterol Hepatol. 2012;10:859–62.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Tye-Din JA, Anderson RP, Ffrench RA, Brown GJ, Hodsman P, Siegel M, et al. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol. 2010;134:289–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Tack GJ, van de Water JM, Kooy-Winkelaar EM, van Bergen J, Meijer GA, von Blomberg BM, et al. Can prolyl endoprotease enzyme treatment mitigate the toxic effect of gluten in coeliac patients? Gastroenterology. 2010;138:S-54.CrossRefGoogle Scholar
  50. 50.
    Siegel M, Garber M, Spencer A, Botwick W, Kumar P, Williams R, et al. Safety, tolerability, and activity of alv003: results from two phase 1 single. Escalating-dose clinical trials. Dig Dis Sci. 2012;57:440–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Gass J, Vora H, Hofmann AF, Gray GM, Khosla C. Enhancement of dietary protein digestion by conjugated bile acids. Gastroenterology. 2007;133:16–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Gass J, Ehren J, Strohmeier G, Isaacs I, Khosla C. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy. Biotechnol Bioeng. 2005;92:674–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Gordon SR, Stanley EJ, Wolf S, Toland A, Wu SJ, Hadidi D, et al. Computational design of an α-Gliadin Peptidase. J Am Chem Soc. 2012;134:20513–20.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    S. Robic. Pegylated glutenase polypeptides. In P. Alvine (ed.), Vol. PCT/US2006/039714, Alvine Pharmaceuticals, USA, 2007.Google Scholar
  55. 55.
    Fuhrmann G, Grotzky A, Lukic R, Matoori S, Luciani P, Yu H, et al. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates. Nat Chem. 2013;5:582–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bickel H, Bachmann C, Beckers R, Brandt NJ, Clayton BE, Corrado G, et al. Neonatal mass screening for metabolic disorders. Eur J Pediatr. 1981;137:133–9.Google Scholar
  57. 57.
    Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC. Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab. 2011;104:S19–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim W, Erlandsen H, Surendran S, Stevens RC, Gamez A, Michols-Matalon K, et al. Trends in enzyme therapy for phenylketonuria. Mol Ther. 2004;10:220–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, et al. A different approach to treatment of phenylketonuria: Phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A. 1999;96:2339–44.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gámez A, Wang L, Sarkissian CN, Wendt D, Fitzpatrick P, Lemontt JF, et al. Structure-based epitope and PEGylation sites mapping of phenylalanine ammonia-lyase for enzyme substitution treatment of phenylketonuria. Mol Genet Metab. 2007;91:325–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Sarkissian CN, Gámez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U S A. 2008;105:20894–9.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Sarkissian CN, Kang TS, Gamez A, Scriver CR, Stevens RC. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of phenylketonuria. Mol Genet Metab. 2011;104:249–54.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Gamez A, Wang L, Straub M, Patch MG, Stevens RC. Toward PKU enzyme replacement therapy: PEGylation with activity retention for three forms of recombinant phenylalanine hydroxylase. Mol Ther. 2004;9:124–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Eavri R, Lorberboum-Galski H. A novel approach for enzyme replacement therapy - The use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. J Biol Chem. 2007;282:23402–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Leroux J-C. Injectable nanocarriers for biodetoxification. Nat Nanotechnol. 2007;2:679–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Rao DECS, Rao KV, Reddy TP, Reddy VD. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechnol. 2009;29:182–98.PubMedCrossRefGoogle Scholar
  67. 67.
    Di Stefano M, Miceli E, Gotti S, Missanelli A, Mazzocchi S, Corazza GR. The effect of oral α-galactosidase on intestinal gas production and gas-related symptoms. Dig Dis Sci. 2007;52:78–83.PubMedCrossRefGoogle Scholar
  68. 68.
    Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, et al. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol. 2011;7:120–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Sciences Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations