Skip to main content

Advertisement

Log in

Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin.

Methods

The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin.

Results

The ability of ANPs to cross the human skin barrier was very low (0.5–1.4 nmol/cm2/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm2/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption.

Conclusions

By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANP:

acyclic nucleoside phosphonate

(S)-8-azaHPMPDAP:

(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diamino-8-azapurine

(S)-cHPMPDAP:

cyclic (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine

CMV:

cytomegalovirus

DDAK:

dodecyl ester of 6-(dimethylamino)hexanoic acid

EBV:

Epstein-Barr virus

HILIC:

hydrophilic interaction liquid chromatography

HIV:

human immunodeficiency virus

HDP:

hexadecyloxypropyl ester

HDP-(S)-HPMPDAP:

hexadecyloxypropyl ester of (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine

HDP-(R)-PMPDAP:

hexadecyloxypropyl ester of (R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine

HHV:

human herpesviruses

HPLC:

high-performance liquid chromatography

(S)-HPMPDAP:

(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine

HSV:

herpes simplex virus

PBS:

phosphate-buffered saline

PG:

propylene glycol

(R)-PMPDAP:

(R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine

(S)-PMPDAP:

(S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine

SC:

stratum corneum

VZV:

varicella-zoster virus

References

  1. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci U S A. 2005;102:4688–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vavrova K, Zbytovska J, Hrabalek A. Amphiphilic transdermal permeation enhancers: structure-activity relationships. Curr Med Chem. 2005;12:2273–91.

    Article  CAS  PubMed  Google Scholar 

  4. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56:603–18.

    Article  CAS  PubMed  Google Scholar 

  5. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101–14.

    Article  CAS  PubMed  Google Scholar 

  6. Sloan KB, Wasdo SC, Rautio J. Design for optimized topical delivery: prodrugs and a paradigm change. Pharm Res. 2006;23:2729–47.

    Article  CAS  PubMed  Google Scholar 

  7. De Clercq E, Holy A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov. 2005;4:928–40.

    Article  PubMed  Google Scholar 

  8. Holy A. Phosphonomethoxyalkyl analogs of nucleotides. Curr Pharm Des. 2003;9:2567–92.

    Article  CAS  PubMed  Google Scholar 

  9. De Clercq E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. Biochem Pharmacol. 2011;82:99–109.

    Article  PubMed  Google Scholar 

  10. Ray AS, Hostetler KY. Application of kinase bypass strategies to nucleoside antivirals. Antiviral Res. 2011;92:277–91.

    Article  CAS  PubMed  Google Scholar 

  11. Pertusati F, Serpi M, McGuigan C. Medicinal chemistry of nucleoside phosphonate prodrugs for antiviral therapy. Antivir Chem Chemother. 2011;22:181–203.

    Article  Google Scholar 

  12. Hostetler KY. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res. 2009;82:A84–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Vavrova K, Kovarikova P, Skolova B, Libalova M, Roh J, Cap R. Enhanced topical and transdermal delivery of antineoplastic and antiviral acyclic nucleoside phosphonate cPr-PMEDAP. Pharm Res. 2011;28:3105–15.

    Article  CAS  PubMed  Google Scholar 

  14. Vavrova K, Lorencova K, Novotny J, Holy A, Hrabalek A. Permeation enhancer dodecyl 6-(dimethylamino)hexanoate increases transdermal and topical delivery of adefovir: influence of pH, ion-pairing and skin species. Eur J Pharm Biopharm. 2008;70:901–7.

    Article  CAS  PubMed  Google Scholar 

  15. Vavrova K, Lorencova K, Klimentova J, Novotny J, Holy AN, Hrabalek A. Transdermal and dermal delivery of adefovir: effects of pH and permeation enhancers. Eur J Pharm Biopharm. 2008;69:597–604.

    Article  CAS  PubMed  Google Scholar 

  16. Novotny J, Kovarikova P, Novotny M, Janusova B, Hrabalek A, Vavrova K. Dimethylamino acid esters as biodegradable and reversible transdermal permeation enhancers: effects of linking chain length, chirality and polyfluorination. Pharm Res. 2009;26:811–21.

    Article  CAS  PubMed  Google Scholar 

  17. Janusova B, Skolova B, Tukorova K, Wojnarova L, Simunek T, Mladenka P, et al. Amino acid derivatives as transdermal permeation enhancers. J Control Release. 2013;165:91–100.

    Article  CAS  PubMed  Google Scholar 

  18. Balzarini J, Aquaro S, Perno CF, Witvrouw M, Holy A, De Clercq E. Activity of the (R)-enantiomers of 9-(2-phosphonylmethoxypropyl)-adenine and 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine against human immunodeficiency virus in different human cell systems. Biochem Biophys Res Commun. 1996;219:337–41.

    Article  CAS  PubMed  Google Scholar 

  19. Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D, et al. Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother. 1993;37:332–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Reymen D, Naesens L, Balzarini J, Holy A, Dvorakova H, De Clercq E. Antiviral activity of selected acyclic nucleoside analogues against human herpesvirus 6. Antiviral Res. 1995;28:343–57.

    Article  CAS  PubMed  Google Scholar 

  21. Vahlenkamp TW, De Ronde A, Balzarini J, Naesens L, De Clercq E, van Eijk MJ, et al. (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine is a potent inhibitor of feline immunodeficiency virus infection. Antimicrob Agents Chemother. 1995;39:746–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Krecmerova M, Jansa P, Dracinsky M, Sazelova P, Kasicka V, Neyts J, et al. 9-[2-(R)-(Phosphonomethoxy)propyl]-2,6-diaminopurine (R)-PMPDAP and its prodrugs: Optimized preparation, including identification of by-products formed, and antiviral evaluation in vitro. Bioorg Med Chem. 2013;21:1199–208.

    Article  CAS  PubMed  Google Scholar 

  23. Krecmerova M, Holy A, Andrei G, Pomeisl K, Tichy T, Brehova P, et al. Synthesis of ester prodrugs of 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) as anti-poxvirus agents. J Med Chem. 2010;53:6825–37.

    Article  CAS  PubMed  Google Scholar 

  24. Lin JC, De Clercq E, Pagano JS. Inhibitory effects of acyclic nucleoside phosphonate analogs, including (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, on Epstein-Barr virus replication. Antimicrob Agents Chemother. 1991;35:2440–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Smith MS, Brian EL, De Clercq E, Pagano JS. Susceptibility of human immunodeficiency virus type 1 replication in vitro to acyclic adenosine analogs and synergy of the analogs with 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother. 1989;33:1482–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Holy A, Dvorakova H, Jindrich J, Masojidkova M, Budesinsky M, Balzarini J, et al. Acyclic nucleotide analogs derived from 8-azapurines: synthesis and antiviral activity. J Med Chem. 1996;39:4073–88.

    Article  CAS  PubMed  Google Scholar 

  27. Valiaeva N, Prichard MN, Buller RM, Beadle JR, Hartline CB, Keith KA, et al. Antiviral evaluation of octadecyloxyethyl esters of (S)-3-hydroxy-2-(phosphonomethoxy)propyl nucleosides against herpesviruses and orthopoxviruses. Antiviral Res. 2009;84:254–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vavrova K, Lorencova K, Klimentova J, Novotny J, Hrabalek A. HPLC method for determination of in vitro delivery through and into porcine skin of adefovir (PMEA). J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853:198–203.

    Article  CAS  PubMed  Google Scholar 

  29. Holas T, Vavrova K, Sima M, Klimentova J, Hrabalek A. Synthesis and transdermal permeation-enhancing activity of carbonate and carbamate analogs of Transkarbam 12. Bioorg Med Chem. 2006;14:7671–80.

    Article  CAS  PubMed  Google Scholar 

  30. Novotny M, Klimentova J, Janusova B, Palat K, Hrabalek A, Vavrova K. Ammonium carbamates as highly active transdermal permeation enhancers with a dual mechanism of action. J Control Release. 2011;150:164–70.

    Article  CAS  PubMed  Google Scholar 

  31. Klimentova J, Kosak P, Vavrova K, Holas T, Hrabalek A. Influence of terminal branching on the transdermal permeation-enhancing activity in fatty alcohols and acids. Bioorg Med Chem. 2006;14:7681–7.

    Article  CAS  PubMed  Google Scholar 

  32. Van Damme L, Szpir M. Current status of topical antiretroviral chemoprophylaxis. Curr Opin HIV AIDS. 2012;7:520–5.

    Article  PubMed  Google Scholar 

  33. Dal Pozzo F, Andrei G, Holy A, Van Den Oord J, Scagliarini A, De Clercq E, et al. Activities of acyclic nucleoside phosphonates against Orf virus in human and ovine cell monolayers and organotypic ovine raft cultures. Antimicrob Agents Chemother. 2005;49:4843–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Duraffour S, Snoeck R, Krecmerova M, van Den Oord J, De Vos R, Holy A, et al. Activities of several classes of acyclic nucleoside phosphonates against camelpox virus replication in different cell culture models. Antimicrob Agents Chemother. 2007;51:4410–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Snoeck R, Holy A, Dewolf-Peeters C, Van Den Oord J, De Clercq E, Andrei G. Antivaccinia activities of acyclic nucleoside phosphonate derivatives in epithelial cells and organotypic cultures. Antimicrob Agents Chemother. 2002;46:3356–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cono J, Casey CG, Bell DM. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm Rep. 2003;52:1–28.

    PubMed  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

This work is dedicated to the memory of Professor Antonín Holý. This work was supported by the Czech Science Foundation (207/11/0365) and Charles University (1404213) and the Subvention for development of research organization RVO 61388963. M.K. and B.Š. thank SVV 2013-267-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Vávrová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diblíková, D., Kopečná, M., Školová, B. et al. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs. Pharm Res 31, 1071–1081 (2014). https://doi.org/10.1007/s11095-013-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1228-8

KEY WORDS

Navigation