Skip to main content
Log in

Classification of the Crystallization Behavior of Amorphous Active Pharmaceutical Ingredients in Aqueous Environments

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To classify the crystallization behavior of amorphous active pharmaceutical ingredients (API) exposed to aqueous environments.

Methods

A set of approximately 50 chemically and physically diverse active pharmaceutical ingredients (APIs) was selected for this study. Two experimental setups were employed to characterize the crystallization behavior of the amorphous API in an aqueous environment. For the first approach, precipitation, as evidenced by the development of turbidity, was induced using the solvent shift method, by mixing concentrated API solutions in DMSO with an aqueous buffer in a capillary. Subsequently, crystallization was monitored in situ over time using synchrotron radiation (simultaneous SAXS/WAXS beamline 12-ID-B at the Advanced Photon Source, Argonne National Laboratories, Argonne, IL). In the second approach, amorphous films were prepared by melt quenching; after adding buffer, crystallization was monitored with time using polarized light microscopy.

Results

In general, the crystallization behavior of a given compound was similar irrespective of the experimental method employed. However, the crystallization behavior among different compounds varied significantly, ranging from immediate and complete crystallization to no observable crystallization over biorelevant time scales. Comparison of the observed behavior with previous studies of crystallization tendency in non-aqueous environments revealed that the crystallization tendency of individual APIs was somewhat similar regardless of the crystallization environment.

Conclusions

API properties, rather than the method by which amorphous materials are generated, tend to dictate crystallization behavior in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  2. Millard JW, Alvarez-Núňez FA, Yalkowsky SH. Solubilization by cosolvents—establishing useful constants for the log-linear model. Int J Pharm. 2002;245(1–2):153–66.

    Article  CAS  PubMed  Google Scholar 

  3. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    Article  CAS  PubMed  Google Scholar 

  4. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677–94.

    Article  CAS  PubMed  Google Scholar 

  5. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.

    Article  PubMed  Google Scholar 

  6. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  7. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  8. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.

    Article  CAS  PubMed  Google Scholar 

  9. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27(12):2704–14.

    Article  CAS  PubMed  Google Scholar 

  10. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals, Part 3: Is maximum solubility advantage attainable and sustainable? J Pharm Sci. 2011;100(10):4349–56.

    Article  CAS  Google Scholar 

  11. Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53.

    Article  CAS  PubMed  Google Scholar 

  12. Ilevbare GA, Taylor LS. Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly-water soluble drugs—implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.

    Article  CAS  Google Scholar 

  13. Zhou DL, Zhang GGZ, Law D, Grant DJW, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.

    Article  CAS  PubMed  Google Scholar 

  14. Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci. 2009;37(3–4):492–8.

    Article  CAS  PubMed  Google Scholar 

  15. Van Eerdenbrugh B, Taylor LS. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm. 2010;7(4):1328–37.

    Article  PubMed  Google Scholar 

  16. Van Eerdenbrugh B, Taylor LS. An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm. 2011;13(20):6171–8.

    Article  Google Scholar 

  17. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    CAS  PubMed  Google Scholar 

  18. Van Eerdenbrugh B, Baird JA, Taylor LS. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci. 2010;99(9):3826–38.

    PubMed  Google Scholar 

  19. Miyajima M, Koshika A, Okada J, Ikeda M, Nishimura K. Effect of polymer crystallinity on papaverine release from poly (L-lactic acid) matrix. J Control Release. 1997;49(2–3):207–15.

    Article  CAS  Google Scholar 

  20. Van Eerdenbrugh B, Stuyven B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, et al. Downscaling drug nanosuspension production: processing aspects and physicochemical characterization. AAPS PharmSciTech. 2009;10(1):44–53.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Van Eerdenbrugh B, Alonzo DE, Taylor LS. Influence of particle size on the ultraviolet spectrum of particulate-containing solutions: implications for in-situ concentration monitoring using UV/vis fiber-optic probes. Pharm Res. 2011;28(7):1643–52.

    Article  PubMed  Google Scholar 

  22. Vandecruys R, Peeters J, Verreck G, Brewster ME. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm. 2007;342(1–2):168–75.

    Article  CAS  PubMed  Google Scholar 

  23. Warren DB, Benameur H, Porter CJH, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704–31.

    Article  CAS  PubMed  Google Scholar 

  24. Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8(2):564–70.

    Article  CAS  PubMed  Google Scholar 

  25. Alonzo DE, Gao Y, Zhou DL, Mo HP, Zhang GGZ, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31.

    Article  CAS  PubMed  Google Scholar 

  26. Brick MC, Palmer HJ, Whitesides TH. Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting. Langmuir. 2003;19(16):6367–80.

    Article  CAS  Google Scholar 

  27. McMahon LE, Timmins P, Williams AC, York P. Characterization of dihydrates prepared from carbamazepine polymorphs. J Pharm Sci. 1996;85(10):1064–9.

    Article  CAS  PubMed  Google Scholar 

  28. Krc J. Crystallographic properties of flufenamic acid. Microscope. 1977;25(1):31–45.

    CAS  Google Scholar 

  29. McConnell JF. 3′-Trifluoromethyldiphenylamine-2-carboxylic acid, C14H10F3NO2 flufenamic acid. Cryst Struct Commun. 1973;2:459–61.

    CAS  Google Scholar 

  30. Allen FH. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002;B58:380–8.

    Article  CAS  Google Scholar 

  31. Murthy HMK, Bhat TN, Vijayan M. Structural studies of analgesics and their interactions. 9. Structure of a new crystal form of 2-([3-(trifluoromethyl)phenyl]amino)benzoic acid (flufenamic acid). Acta Crystallogr. 1982;B38:315–7.

    Article  CAS  Google Scholar 

  32. Chen XM, Li TL, Morris KR, Byrn SR. Crystal packing and chemical reactivity of two polymorphs of flufenamic acid with ammonia. Mol Cryst Liq Cryst. 2002;381:121–31.

    Article  CAS  Google Scholar 

  33. Mullin JW. Crystallization. 4th ed. Oxford: Elsiever Butterworth-Heinemann; 2001.

    Google Scholar 

  34. Peeters J, Neeskens P, Tollenaere JP, Van Remoortere P, Brewster ME. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci. 2002;91(6):1414–22.

    Article  CAS  PubMed  Google Scholar 

  35. Yalkowsky SH, He Y. Handbook of aqueous solubility data. Boca Raton: CRC Press LLC; 2003.

    Book  Google Scholar 

  36. Alonzo DE, Zhang GGZ, Zhou DL, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  37. Greco K, Bogner R. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci. 2012;101(9):2996–3018.

    Article  CAS  PubMed  Google Scholar 

  38. Baird JA, Thomas LC, Aubuchon SR, Taylor LS. Evaluating the non-isothermal crystallization behavior of organic molecules from the undercooled melt state using rapid heat/cool calorimetry. CrystEngComm. 2013;15(1):111–9.

    Article  CAS  Google Scholar 

  39. Mahlin D, Ponnambalam S, Hockerfelt MH, Bergstrom CAS. Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol Pharm. 2011;8(2):498–506.

    Article  CAS  PubMed  Google Scholar 

  40. Yu L, Reutzel-Edens SM, Mitchell CA. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org Process Res Dev. 2000;4(5):396–402.

    Article  CAS  Google Scholar 

  41. Hursthouse MB, Huth LS, Threlfall TL. Why do organic compounds crystallise well or badly or ever so slowly? Why is crystallisation nevertheless such a good purification technique? Org Process Res Dev. 2009;13(6):1231–40.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357. Dr. Byeongdu Lee and Dr. Xiaobing Zuo (12-ID-B beamline, Advanced Photon Source, Argonne, IL) are acknowledged for their help with the XRPD experiments. B.V.E. is a Postdoctoral Researcher of the “Fonds voor Wetenschappelijk Onderzoek”, Flanders, Belgium. The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS)(EEC-0540855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eerdenbrugh, B., Raina, S., Hsieh, YL. et al. Classification of the Crystallization Behavior of Amorphous Active Pharmaceutical Ingredients in Aqueous Environments. Pharm Res 31, 969–982 (2014). https://doi.org/10.1007/s11095-013-1216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1216-z

KEY WORDS

Navigation