Skip to main content

Advertisement

Log in

Effects of Hepatic Ischemia-Reperfusion Injury on the P-Glycoprotein Activity at the Liver Canalicular Membrane and Blood–Brain Barrier Determined by In Vivo Administration of Rhodamine 123 in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on the activity of P-glycoprotein (P-gp) in the liver and at the blood–brain barrier (BBB) of rats using rhodamine 123 (RH-123) as an in vivo marker.

Methods

Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and some other transporters in the liver and brain were also determined by Western blot analysis.

Results

P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or brain distribution of RH-123 was not affected by the 12-h IR injury.

Conclusions

Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution of drugs that are transported by P-gp and possibly other transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AUC:

Area under the plasma concentration-time curve

BBB:

Blood–brain barrier

BIBF:

Bile salt-independent bile flow

C 40 br :

Concentration in the brain at 40 min

Cliver :

Concentration in the liver

Cmedian :

Concentration in the median lobe of the liver

Cright :

Concentration in the right lobe of the liver

DTT:

DL-dithiothreitol

f u :

Unbound fraction in plasma

IPRL:

Isolated perfused rat liver

IR:

Ischemia-reperfusion

K in :

Apparent brain uptake clearance

LPS:

Lipopolysaccharides

Mrp:

Multidrug resistance-associated protein

Oatp:

Organic anion transporting polypeptide

P-gp:

P-glycoprotein

PMSF:

Phenylmethanesulfonyl fluoride

RH-110:

Rhodamine 110

RH-123:

Rhodamine 123

RH-Glu:

Rhodamine glucuronide

TNF- α:

Tumor necrosis factor-α

UDPGA:

Uridine 5′-diphosphoglucuronic acid

Wischemic :

Weight of ischemic lobes of the liver

Wliver :

Total weight of the liver

Wnon-ischemic :

Weight of non-ischemic lobes of the liver

REFERENCES

  1. Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol. 1997;37:327–38.

    Article  CAS  PubMed  Google Scholar 

  2. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284:G15–26.

    CAS  PubMed  Google Scholar 

  3. Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am J Transplant. 2011;11:1563–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fiorini RN, Shafizadeh SF, Polito C, Rodwell DW, Cheng G, Evans Z, et al. Anti-endotoxin monoclonal antibodies are protective against hepatic ischemia/reperfusion injury in steatotic mice. Am J Transplant. 2004;4:1567–73.

    Article  CAS  PubMed  Google Scholar 

  5. Wanner GA, Ertel W, Muller P, Hofer Y, Leiderer R, Menger MD, et al. Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock. 1996;5:34–40.

    Article  CAS  PubMed  Google Scholar 

  6. Rymsa B, Wang JF, de Groot H. O2-. release by activated Kupffer cells upon hypoxia-reoxygenation. Am J Physiol. 1991;261:G602–7.

    CAS  PubMed  Google Scholar 

  7. Liu P, McGuire GM, Fisher MA, Farhood A, Smith CW, Jaeschke H. Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock. 1995;3:56–62.

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka Y, Chen C, Maher JM, Klaassen CD. Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation. 2006;82:258–66.

    Article  CAS  PubMed  Google Scholar 

  9. Fardel O, Le Vee M. Regulation of human hepatic drug transporter expression by pro-inflammatory cytokines. Expert Opin Drug Metab Toxicol. 2009;5:1469–81.

    Article  CAS  PubMed  Google Scholar 

  10. Geier A, Dietrich CG, Voigt S, Kim SK, Gerloff T, Kullak-Ublick GA, et al. Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology. 2003;38:345–54.

    Article  CAS  PubMed  Google Scholar 

  11. Hartmann G, Cheung AK, Piquette-Miller M. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002;303:273–81.

    Article  CAS  PubMed  Google Scholar 

  12. Ikemura K, Urano K, Matsuda H, Mizutani H, Iwamoto T, Okuda M. Decreased oral absorption of cyclosporine A after liver ischemia-reperfusion injury in rats: the contribution of CYP3A and P-glycoprotein to the first-pass metabolism in intestinal epithelial cells. J Pharmacol Exp Ther. 2009;328:249–55.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka Y, Chen C, Maher JM, Klaassen CD. Ischemia-reperfusion of rat livers decreases liver and increases kidney multidrug resistance associated protein 2 (Mrp2). Toxicol Sci. 2008;101:171–8.

    Article  CAS  PubMed  Google Scholar 

  14. Fouassier L, Beaussier M, Schiffer E, Rey C, Barbu V, Mergey M, et al. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol Gastrointest Liver Physiol. 2007;293:G25–35.

    Article  CAS  PubMed  Google Scholar 

  15. Parasrampuria R, Shaik IH, Mehvar R. Effects of in vivo hepatic ischemia-reperfusion injury on the hepatobiliary disposition of rhodamine 123 and its metabolites in isolated perfused rat livers. J Pharm Pharm Sci. 2012;15:318–28.

    CAS  PubMed  Google Scholar 

  16. Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37:635–43.

    Article  PubMed  Google Scholar 

  17. Agarwal S, Elmquist WF. Insight into the cooperation of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood-brain barrier: a case study examining sorafenib efflux clearance. Mol Pharm. 2012;9:678–84.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010;31:246–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kusuhara H, Sugiyama Y. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov Today. 2001;6:206–12.

    Article  CAS  PubMed  Google Scholar 

  20. Syvanen S, Xie R, Sahin S, Hammarlund-Udenaes M. Pharmacokinetic consequences of active drug efflux at the blood-brain barrier. Pharm Res. 2006;23:705–17.

    Article  PubMed  Google Scholar 

  21. Ando H, Nishio Y, Ito K, Nakao A, Wang L, Zhao YL, et al. Effect of endotoxin on P-glycoprotein-mediated biliary and renal excretion of rhodamine-123 in rats. Antimicrob Agents Chemother. 2001;45:3462–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang Q, Yang H, Miller DW, Elmquist WF. Effect of the p-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: an in vivo microdialysis study in freely moving rats. Biochem Biophys Res Commun. 1995;211:719–26.

    Article  CAS  PubMed  Google Scholar 

  23. de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res. 1998;15:1657–65.

    Article  PubMed  Google Scholar 

  24. Stapf V, Thalhammer T, Huber-Huber R, Felberbauer F, Gajdzik L, Graf J. Inhibition of rhodamine 123 secretion by cyclosporin A as a model of P-glycoprotein mediated transport in liver. Anticancer Res. 1994;14:581–5.

    CAS  PubMed  Google Scholar 

  25. Parasrampuria R, Mehvar R. Effects of P-glycoprotein and Mrp2 inhibitors on the hepatobiliary disposition of Rhodamine 123 and its glucuronidated metabolite in isolated perfused rat livers. J Pharm Sci. 2010;99:455–66.

    Article  CAS  PubMed  Google Scholar 

  26. Shaik IH, Mehvar R. Cytochrome P450 induction by phenobarbital exacerbates warm hepatic ischemia-reperfusion injury in rat livers. Free Radic Res. 2010;44:441–53.

    Article  CAS  PubMed  Google Scholar 

  27. Spiegel HU, Bahde R. Experimental models of temporary normothermic liver ischemia. J Investig Surg. 2006;19:113–23.

    Article  CAS  Google Scholar 

  28. Shaik IH, Mehvar R. Effects of normothermic hepatic ischemia-reperfusion injury on the in vivo, isolated perfused liver, and microsomal disposition of chlorzoxazone, a cytochrome P450 2E1 probe, in rats. J Pharm Sci. 2011;100:5281–92.

    Article  CAS  PubMed  Google Scholar 

  29. Sweatman TW, Seshadri R, Israel M. Metabolism and elimination of rhodamine 123 in the rat. Cancer Chemother Pharmacol. 1990;27:205–10.

    Article  CAS  PubMed  Google Scholar 

  30. Parasrampuria R, Mehvar R. Hepatobiliary disposition of rhodamine 123 in isolated perfused rat livers. Xenobiotica. 2008;38:1263–73.

    Article  CAS  PubMed  Google Scholar 

  31. Lee KJ, Mower R, Hollenbeck T, Castelo J, Johnson N, Gordon P, et al. Modulation of nonspecific binding in ultrafiltration protein binding studies. Pharm Res. 2003;20:1015–21.

    Article  CAS  PubMed  Google Scholar 

  32. Manfredi G, Yang L, Gajewski CD, Mattiazzi M. Measurements of ATP in mammalian cells. Methods. 2002;26:317–26.

    Article  CAS  PubMed  Google Scholar 

  33. Vuppugalla R, Mehvar R. Selective effects of nitric oxide on the disposition of chlorzoxazone and dextromethorphan in isolated perfused rat livers. Drug Metab Dispos. 2006;34:1160–6.

    Article  CAS  PubMed  Google Scholar 

  34. Killard AJ, O’Kennedy R, Bogan DP. Analysis of the glucuronidation of 7-hydroxycoumarin by HPLC. J Pharm Biomed Anal. 1996;14:1585–90.

    Article  CAS  PubMed  Google Scholar 

  35. Bickel U. How to measure drug transport across the blood-brain barrier. NeuroRx. 2005;2:15–26.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bedirli N, Ofluoglu E, Kerem M, Utebey G, Alper M, Yilmazer D, et al. Hepatic energy metabolism and the differential protective effects of sevoflurane and isoflurane anesthesia in a rat hepatic ischemia-reperfusion injury model. Anesth Analg. 2008;106:830–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ofluoglu E, Kerem M, Pasaoglu H, Turkozkan N, Seven I, Bedirli A, et al. Delayed energy protection of ischemic preconditioning on hepatic ischemia/reperfusion injury in rats. Eur Surg Res. 2006;38:114–21.

    Article  CAS  PubMed  Google Scholar 

  38. Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2005;33:388–94.

    Article  CAS  PubMed  Google Scholar 

  39. Forster S, Thumser AE, Hood SR, Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS ONE. 2012;7:e33253.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ban D, Kudo A, Sui S, Tanaka S, Nakamura N, Ito K, et al. Decreased Mrp2-dependent bile flow in the post-warm ischemic rat liver. J Surg Res. 2009;153:310–6.

    Article  CAS  PubMed  Google Scholar 

  41. Omae T, Goto M, Shimomura M, Masuda S, Ito K, Okuda M, et al. Transient up-regulation of P-glycoprotein reduces tacrolimus absorption after ischemia-reperfusion injury in rat ileum. Biochem Pharmacol. 2005;69:561–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hartz AM, Bauer B, Fricker G, Miller DS. Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol. 2006;69:462–70.

    Article  CAS  PubMed  Google Scholar 

  43. Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol. 2007;71:667–75.

    Article  CAS  PubMed  Google Scholar 

  44. Rigor RR, Hawkins BT, Miller DS. Activation of PKC isoform beta(I) at the blood-brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain. J Cereb Blood Flow Metab. 2010;30:1373–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Peralta C, Fernandez L, Panes J, Prats N, Sans M, Pique JM, et al. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat. Hepatology. 2001;33:100–13.

    Article  CAS  PubMed  Google Scholar 

  46. Seelbach MJ, Brooks TA, Egleton RD, Davis TP. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem. 2007;102:1677–90.

    Article  CAS  PubMed  Google Scholar 

  47. McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, et al. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem. 2012; 122:962–75.

    Google Scholar 

  48. Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos. 2010;38:168–76.

    Article  CAS  PubMed  Google Scholar 

  49. Ronaldson PT, Finch JD, Demarco KM, Quigley CE, Davis TP. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharmacol Exp Ther. 2011;336:827–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu X, Yang Z, Yang J, Yang H. Increased P-glycoprotein expression and decreased phenobarbital distribution in the brain of pentylenetetrazole-kindled rats. Neuropharmacology. 2007;53:657–63.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Mohammad K. Miah and Imam H. Shaik contributed equally to this work. The authors would like to acknowledge financial support from the Blood–brain Barrier Research Center at Texas Tech School of Pharmacy. Additionally, we would like to thank Dr. Thomas J. Thekkumkara for the use of VersaDoc Image System in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mehvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miah, M.K., Shaik, I.H., Bickel, U. et al. Effects of Hepatic Ischemia-Reperfusion Injury on the P-Glycoprotein Activity at the Liver Canalicular Membrane and Blood–Brain Barrier Determined by In Vivo Administration of Rhodamine 123 in Rats. Pharm Res 31, 861–873 (2014). https://doi.org/10.1007/s11095-013-1208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1208-z

KEY WORDS

Navigation