Skip to main content

Advertisement

Log in

Functional Magnetic Nanoparticles for Non-Viral Gene Delivery and MR Imaging

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Gene therapy is becoming a promising strategy to treat various kinds of genetic and acquired diseases. However, the development of safe, efficient, and targetable gene delivery systems remains a major challenge in gene therapy. The unique material characteristics of magnetic nanoparticles (MNPs), including high surface area, facile surface modification, controllable size, and excellent magnetic properties, make them promising candidates for gene delivery. The engineered MNPs with modifiable functional surfaces and bioactive cores can result in several advantageous diagnostic and therapeutic properties including enhanced magnetic resonance imaging (MRI) signal intensity, long permeation and retention in the circulatory system, specific delivery of therapeutic genes to target sites. In this review, the updated research on the preparation and surface modification of MNPs for gene delivery is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22:2729–42.

    CAS  PubMed  Google Scholar 

  2. Vermaand IM, Somia N. Gene therapy—promises, problems and prospects. Nature. 1997;389:239–42.

    Google Scholar 

  3. Liu G, Swierczewska M, Lee S, Chen X. Functional nanoparticles for molecular imaging guided gene delivery. Nano Today. 2010;5:524–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.

    CAS  PubMed  Google Scholar 

  5. Mintzerand MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302.

    Google Scholar 

  6. Pan Y, Du X, Zhao F, Xu B. Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev. 2012;41:2912–42.

    CAS  PubMed  Google Scholar 

  7. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 2012;5:173–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45.

    CAS  PubMed  Google Scholar 

  9. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.

    CAS  PubMed  Google Scholar 

  10. Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res. 2001;95:200–6.

    CAS  PubMed  Google Scholar 

  11. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46:1222–44.

    CAS  PubMed  Google Scholar 

  12. Frimpongand RA, Hilt JZ. Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine (Lond). 2010;5:1401–14.

    Google Scholar 

  13. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.

    CAS  PubMed  Google Scholar 

  14. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3:169–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res. 2011;44:875–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc. 2001;123:12798–801.

    CAS  PubMed  Google Scholar 

  17. Sunand S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124:8204–5.

    Google Scholar 

  18. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.

    Google Scholar 

  19. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891–5.

    CAS  PubMed  Google Scholar 

  20. Lee HY, Lee SH, Xu C, Xie J, Lee JH, Wu B, et al. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology. 2008;19:165101.

    PubMed Central  PubMed  Google Scholar 

  21. Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed Engl. 2004;44:123–6.

    Google Scholar 

  22. Li Z, Chen H, Bao H, Gao M. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater. 2004;16:1391–3.

    CAS  Google Scholar 

  23. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl. 2007;46:5397–401.

    Google Scholar 

  24. Bondi JF, Oyler KD, Ke X, Schiffer P, Schaak RE. Chemical synthesis of air-stable manganese nanoparticles. J Am Chem Soc. 2009;131:9144–5.

    CAS  PubMed  Google Scholar 

  25. Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, et al. Well shaped Mn(3)O(4) nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small. 2011;7:475–83.

    CAS  PubMed  Google Scholar 

  26. Rohani Bastami T, Entezari MH. A novel approach for the synthesis of superparamagnetic Mn3O4 nanocrystals by ultrasonic bath. Ultrason Sonochem. 2011;19:560–9.

    Google Scholar 

  27. Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics. 2012;2:45–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, et al. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano. 2009;3:3663–9.

    Google Scholar 

  29. Huang CC, Khu NH, Yeh CS. The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials. 2010;31:4073–8.

    Google Scholar 

  30. Baek MJ, Park JY, Xu W, Kattel K, Kim HG, Lee EJ, et al. Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. ACS Appl Mater Interfaces. 2010;2:2949–55.

    Google Scholar 

  31. An K, Kwon SG, Park M, Na HB, Baik SI, Yu JH, et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008;8:4252–8.

    CAS  PubMed  Google Scholar 

  32. Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed Engl. 2009;48:321–4.

    CAS  PubMed  Google Scholar 

  33. Hao R, Yu J, Hou Y, Sun S. One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. Chem Commun (Camb). 47:9095–97.

  34. Lee YC, Pakhomov AB, Krishnan KM. Size-driven magnetic transitions in monodisperse MnO nanocrystals. J Appl Phys. 2010;107:2E124.

    Google Scholar 

  35. Lee YC, Chen DY, Dodd SJ, Bouraoud N, Koretsky AP, Krishnan KM. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials. 2012;33:3560–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Niendorf HP, Felix R, Laniado M, Schorner W, Kornmesser W, Claussen C. Magnetic resonance imaging of intracranial tumors using gadolinium-DTPA. Initial experience with fast imaging. Acta Radiol Suppl. 1986;369:561–3.

    CAS  PubMed  Google Scholar 

  37. Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng. 2011;39:2360–73.

    PubMed Central  PubMed  Google Scholar 

  38. Girardot C, Boukobza M, Lamoureux JP, Sichez JP, Capelle L, Zouaoui A, et al. Choroid plexus papillomas of the posterior fossa in adults: MR imaging and gadolinium enhancement. Report of four cases and review of the literature. J Neuroradiol. 1990;17:303–18.

    CAS  PubMed  Google Scholar 

  39. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.

    CAS  PubMed  Google Scholar 

  40. Runge VM, Ai T, Hao D, Hu X. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance. Investig Radiol. 2011;46:807–16.

    CAS  Google Scholar 

  41. Engstrom M, Klasson A, Pedersen H, Vahlberg C, Kall PO, Uvdal K. High proton relaxivity for gadolinium oxide nanoparticles. MAGMA. 2006;19:180–6.

    PubMed  Google Scholar 

  42. Soderlind F, Pedersen H, Petoral Jr RM, Kall PO, Uvdal K. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interface Sci. 2005;288:140–8.

    Google Scholar 

  43. Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, et al. Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J Phys Chem B. 2006;110:5179–81.

    Google Scholar 

  44. Trubetskoy VS, Cannillo JA, Milshtein A, Wolf GL, Torchilin VP. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging. 1995;13:31–7.

    CAS  PubMed  Google Scholar 

  45. Wisner ER, Aho-Sharon KL, Bennett MJ, Penn SG, Lebrilla CB, Nantz MH. A modular lymphographic magnetic resonance imaging contrast agent: contrast enhancement with DNA transfection potential. J Med Chem. 1997;40:3992–6.

    CAS  PubMed  Google Scholar 

  46. Leclercq F, Cohen-Ohana M, Mignet N, Sbarbati A, Herscovici J, Scherman D, et al. Design, synthesis, and evaluation of gadolinium cationic lipids as tools for biodistribution studies of gene delivery complexes. Bioconjug Chem. 2003;14:112–9.

    CAS  PubMed  Google Scholar 

  47. Bhakta G, Sharma RK, Gupta N, Cool S, Nurcombe V, Maitra A. Multifunctional silica nanoparticles with potentials of imaging and gene delivery. Nanomedicine. 2011;7:472–9.

    CAS  PubMed  Google Scholar 

  48. Shan L. Gold nanoparticles coated with dithiolated diethylenetriamine pentaacetic acid-gadolinium chelate. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. PMID: 21089230; 2010.

  49. Shan L. Gold nanoparticles functionalized with gadolinium-diethylenetriamine pentaacetic acid-cysteine conjugate. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. PMID: 21089255; 2010.

  50. McBain SC, Yiu HHP, El Haj A, Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem. 2007;17:2561–5.

    CAS  Google Scholar 

  51. Sunand X, Zhang N. Cationic polymer optimization for efficient gene delivery. Mini Rev Med Chem. 2010;10:108–25.

    Google Scholar 

  52. Lai WF. In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives. Exp Rev Med Devices. 2011;8:173–85.

    CAS  Google Scholar 

  53. Coll JL, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther. 1999;10:1659–66.

    CAS  PubMed  Google Scholar 

  54. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    CAS  PubMed  Google Scholar 

  55. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med. 2005;7:992–1009.

    CAS  PubMed  Google Scholar 

  56. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    CAS  PubMed  Google Scholar 

  57. Choiand S, Lee KD. Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate. J Control Release. 2008;131:70–6.

    Google Scholar 

  58. Forrest ML, Koerber JT, Pack DW. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem. 2003;14:934–40.

    CAS  PubMed  Google Scholar 

  59. Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res. 2005;22:373–80.

    CAS  PubMed  Google Scholar 

  60. Park IK, Ng CP, Wang J, Chu B, Yuan C, Zhang S, et al. Determination of nanoparticle vehicle unpackaging by MR imaging of a T(2) magnetic relaxation switch. Biomaterials. 2008;29:724–32.

    PubMed  Google Scholar 

  61. Arsianti M, Lim M, Marquis CP, Amal R. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir. 2010;26:7314–26.

    CAS  PubMed  Google Scholar 

  62. Zhou Y, Tang Z, Shi C, Shi S, Qian Z, Zhou S. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. J Mater Sci Mater Med. 2012;23:2697.

    CAS  PubMed  Google Scholar 

  63. Liu G, Wang Z, Lu J, Xia C, Gao F, Gong Q, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials. 2010;32:528–37.

    PubMed  Google Scholar 

  64. Liu G, Xie J, Zhang F, Wang Z, Luo K, Zhu L, et al. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small. 7:2742–49.

  65. Liu Y, He ZJ, Xu B, Wu QZ, Liu G, Zhu H, et al. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res. 1391:24–35.

  66. Liu G, Yang H, Zhang XM, Shao Y, Jiang H. MR imaging for the longevity of mesenchymal stem cells labeled with poly-L-lysine-Resovist complexes. Contrast Media Mol Imaging. 2010;5:53–8.

    CAS  PubMed  Google Scholar 

  67. Bae KH, Lee K, Kim C, Park TG. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials. 2010;32:176–84.

    Google Scholar 

  68. Yang J, Lee ES, Noh MY, Koh SH, Lim EK, Yoo AR, et al. Ambidextrous magnetic nanovectors for synchronous gene transfection and labeling of human MSCs. Biomaterials. 2011;32:6174–82.

    CAS  PubMed  Google Scholar 

  69. Li W, Ma N, Ong LL, Kaminski A, Skrabal C, Ugurlucan M, et al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med. 2008;10:897–909.

    CAS  PubMed  Google Scholar 

  70. Ostro MJ, Giacomoni D, Lavelle D, Paxton W, Dray S. Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature. 1978;274:921–3.

    CAS  PubMed  Google Scholar 

  71. Fraley RT, Fornari CS, Kaplan S. Entrapment of a bacterial plasmid in phospholipid vesicles: potential for gene transfer. Proc Natl Acad Sci U S A. 1979;76:3348–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Mukherjee AB, Orloff S, Butler JD, Triche T, Lalley P, Schulman JD. Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): carrier potential in gene transfer. Proc Natl Acad Sci U S A. 1978;75:1361–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987;84:7413–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Dauty E, Remy JS, Blessing T, Behr JP. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc. 2001;123:9227–34.

    CAS  PubMed  Google Scholar 

  75. Watanabe T, Umehara T, Yasui F, Nakagawa S, Yano J, Ohgi T, et al. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J Hepatol. 2007;47:744–50.

    CAS  PubMed  Google Scholar 

  76. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006;13:283–7.

    CAS  PubMed  Google Scholar 

  77. Yang SY, Sun JS, Liu CH, Tsuang YH, Chen LT, Hong CY, et al. Ex vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs. 2008;32:195–204.

    CAS  PubMed  Google Scholar 

  78. Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther. 2006;13:1545–52.

    CAS  PubMed  Google Scholar 

  79. Pan X, Guan J, Yoo JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm. 2008;358:263–70.

    CAS  PubMed  Google Scholar 

  80. Zheng X, Lu J, Deng L, Xiong Y, Chen J. Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm. 2009;366:211–7.

    CAS  PubMed  Google Scholar 

  81. Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Hammerschmid E, Anton M, Zelphati O, et al. Liposomal magnetofection. Methods Mol Biol. 2010;605:487–525.

    CAS  PubMed  Google Scholar 

  82. Hirao K, Sugita T, Kubo T, Igarashi K, Tanimoto K, Murakami T, et al. Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field. Int J Oncol. 2003;22:1065–71.

    CAS  PubMed  Google Scholar 

  83. Biswas S, Gordon LE, Clark GJ, Nantz MH. Click assembly of magnetic nanovectors for gene delivery. Biomaterials. 2011;32:2683–8.

    CAS  PubMed  Google Scholar 

  84. De Cuyper M, Joniau M. Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids. Langmuir. 1991;7:647–52.

    Google Scholar 

  85. Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4:598–606.

    CAS  PubMed  Google Scholar 

  86. Holzbach T, Vlaskou D, Neshkova I, Konerding MA, Wortler K, Mykhaylyk O, et al. Non-viral VEGF(165) gene therapy—magnetofection of acoustically active magnetic lipospheres (‘magnetobubbles’) increases tissue survival in an oversized skin flap model. J Cell Mol Med. 2008;14:587–99.

    PubMed  Google Scholar 

  87. Oliver M, Ahmad A, Kamaly N, Perouzel E, Caussin A, Keller M, et al. MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. Org Biomol Chem. 2006;4:3489–97.

    CAS  PubMed  Google Scholar 

  88. Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002;6:466–71.

    CAS  PubMed  Google Scholar 

  89. Esfandand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Google Scholar 

  90. Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.

    CAS  PubMed  Google Scholar 

  91. Svensonand S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Google Scholar 

  92. Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style. Biomaterials. 2009;31:1360–71.

    PubMed  Google Scholar 

  93. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci. 2005;94:423–36.

    CAS  PubMed  Google Scholar 

  94. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker Jr JR. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A. 1996;93:4897–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–6.

    CAS  PubMed  Google Scholar 

  96. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release. 2004;99:445–56.

    CAS  PubMed  Google Scholar 

  97. Kakizawaand Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev. 2002;54:203–22.

    Google Scholar 

  98. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules. 2002;35:3456–62.

    CAS  Google Scholar 

  99. Kim TI, Bai CZ, Nam K, Park JS. Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. J Control Release. 2009;136:132–9.

    CAS  PubMed  Google Scholar 

  100. Wen YT, Pan SR, Guo ZH, Wang C, Zeng X, Wu HM, et al. Histidine modified PAMAM a s gene vector for enhancing gene transfection efficiency in serum. Chin J Biomed Eng. 2010;29:129–36.

    CAS  Google Scholar 

  101. Jeong JH, Lane CV, James YW, Zhong Z, Johan EFJ, Kim JW, et al. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 2007;28:1912.

    CAS  Google Scholar 

  102. Nam HY, Hahn HJ, Nam K, Choi WH, Jeong Y, Kim DE, et al. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int J Pharm. 2008;363:199–205.

    CAS  PubMed  Google Scholar 

  103. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67:8156–63.

    CAS  PubMed  Google Scholar 

  104. Liu WM, Xue YN, He WT, Zhuo RX, Huang SW. Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary complexes: a novel strategy for magnetofection. J Control Release. 152 Suppl 1:e159–60.

  105. Parker-Esquivel B, Flores KJ, Louiselle D, Craig M, Dong L, Garrad R, et al. Association of poly I:C RNA and plasmid DNA onto MnO nanorods mediated by PAMAM. Langmuir. 28:3860–70.

  106. Namgung R, Kim J, Singha K, Kim CH, Kim WJ. Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: study of physicochemical properties and in vitro gene transfection. Mol Pharm. 2009;6:1826–35.

    CAS  PubMed  Google Scholar 

  107. Zhao Y, Yang R, Liu D, Sun M, Zhou L, Wang Z, et al. Starburst low-molecular weight polyethylenimine for efficient gene delivery. J Biomed Mater Res A. 2011;100:134–40.

    PubMed  Google Scholar 

  108. Patil ML, Zhang M, Minko T. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano. 2011;5:1877–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Qiuand LY, Bae YH. Self-assembled polyethylenimine-graft-poly(epsilon-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials. 2007;28:4132–42.

    Google Scholar 

  110. Wang Y, Gao S, Ye WH, Yoon HS, Yang YY. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater. 2006;5:791–6.

    CAS  PubMed  Google Scholar 

  111. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 2008;29:4348–55.

    CAS  PubMed  Google Scholar 

  112. Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, et al. PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater. 2009;19:2244–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, et al. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano. 2010;4:4587–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, et al. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials. 2010;31:8032–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Kamaly N, Kalber T, Ahmad A, Oliver MH, So PW, Herlihy AH, et al. Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem. 2008;19:118–29.

    CAS  PubMed  Google Scholar 

  116. Di Pasqua AJ, Sharma KK, Shi YL, Toms BB, Ouellette W, Dabrowiak JC, et al. Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem. 2008;102:1416–23.

    PubMed  Google Scholar 

  117. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Li X, Xie QR, Zhang J, Xia W, Gu H. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials. 2011;32:9546–56.

    CAS  PubMed  Google Scholar 

  119. Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl. 2009;48:4174–9.

    CAS  PubMed  Google Scholar 

  120. Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res. 2010;70:7553–61.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Major State Basic Research Development Program of China (973 Program) (2010CB934601, 2013CB733802); the National Nature Science of Foundation of China (NSFC) (81101101, 51273165, 51125001, 51172005); the Research Fellowship for International Young Scientists of the National Natural Science Foundation of China (51250110078); Fundamental Research Funds for the Central Universities (2013121039); and the Key Project of Chinese Ministry of Education (212149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Yanglong Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, R., Liu, G., Zhu, J. et al. Functional Magnetic Nanoparticles for Non-Viral Gene Delivery and MR Imaging. Pharm Res 31, 1377–1389 (2014). https://doi.org/10.1007/s11095-013-1205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1205-2

KEY WORDS

Navigation