Skip to main content
Log in

PLGA/Liposome Hybrid Nanoparticles for Short-Chain Ceramide Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA).

Methods

BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor).

Results

FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h.

Conclusions

The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740. PubMed PMID: 18351638.

    Article  CAS  PubMed  Google Scholar 

  2. Fahr A, van Hoogevest P, May S, Bergstrand N, Leigh MLS. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26(3–4):251–65. PubMed PMID: 16112849.

    Google Scholar 

  3. Chowdhary RK, Shariff I, Dolphin D. Drug release characteristics of lipid based benzoporphyrin derivative. J Pharm Pharm Sci. 2003;6(1):13–9. PubMed PMID: 12753726.

    Google Scholar 

  4. Shabbits JA, Chiu GN, Mayer LD. Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. J Control Release 2002;84(3):161–70. PubMed PMID: 12468219.

    Google Scholar 

  5. Pal A, Khan S, Wang YF, Kamath N, Sarkar AK, Ahmad A, et al. Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res. 2005;25(1A):331–41. PubMed PMID: 15816556.

    CAS  PubMed  Google Scholar 

  6. Zhigaltsev IV, Maurer N, Akhong QF, Leone R, Leng E, Wang J, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release 2005;104(1):103–11. PubMed PMID: 15866338.

    Google Scholar 

  7. Amselem S, Cohen R, Barenholz Y. In vitro tests to predict in vivo performance of liposomal dosage forms. Chem Phys Lipids. 1993;64(1–3):219–37. PubMed PMID: 8242835.

    Article  CAS  PubMed  Google Scholar 

  8. Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol. 1998;60:643–65. PubMed PMID: 9558480.

    Article  CAS  PubMed  Google Scholar 

  9. Sot J, Aranda FJ, Collado MI, Goni FM, Alonso A. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J. 2005;88(5):3368–80. PubMed PMID: 15695626. Pubmed Central PMCID: 1305484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shabbits JA, Mayer LD. Intracellular delivery of ceramide lipids via liposomes enhances apoptosis in vitro. Biochim Biophys Acta. 2003;1612(1):98–106. PubMed PMID: 12729935.

    Article  CAS  PubMed  Google Scholar 

  11. Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 2005;11(9):3465–74. PubMed PMID: 15867249.

    Google Scholar 

  12. Stover T, Kester M. Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther. 2003;307(2):468–75. PubMed PMID: 12975495.

    Article  CAS  PubMed  Google Scholar 

  13. Shabbits JA, Mayer LD. High ceramide content liposomes with in vivo antitumor activity. Anticancer Res. 2003;23(5A):3663–9. PubMed PMID: 14666662.

    CAS  PubMed  Google Scholar 

  14. Zolnik BS, Stern ST, Kaiser JM, Heakal Y, Clogston JD, Kester M, et al. Rapid distribution of liposomal short-chain ceramide in vitro and in vivo. Drug Metab Dispos 2008;36(8):1709–15. PubMed PMID: 18490436.

    Google Scholar 

  15. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29. PubMed PMID: 20627257.

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci U S A. 2008;105(18):6596–601. PubMed PMID: 18445654. Pubmed Central PMCID: 2373326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gordon GW, Berry G, Liang XH, Levine B, Herman B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J. 1998;74(5):2702–13. PubMed PMID: 9591694. Pubmed Central PMCID: 1299610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Barth BM, Cabot MC, Kester M. Ceramide-based therapeutics for the treatment of cancer. Anticancer Agents Med Chem. 2011;11(9):911–9. PubMed PMID: 21707481.

    Google Scholar 

  19. Koshkaryev A, Piroyan A, Torchilin VP. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther. 2012;13(1):50–60. PubMed PMID: 22336588. Pubmed Central PMCID: 3335981.

    Article  CAS  PubMed  Google Scholar 

  20. Khazanov E, Priev A, Shillemans JP, Barenholz Y. Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application. Langmuir 2008;24(13):6965–80. PubMed PMID: 18512883.

    Google Scholar 

  21. Wang H, Zhao P, Su W, Wang S, Liao Z, Niu R, et al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials. 2010;31(33):8741–8. PubMed PMID: 20727587.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Han X, Li X, Luo Y, Zhao H, Yang M, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7:4299–310. PubMed PMID: 22915851. Pubmed Central PMCID: 3419509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011;108(27):10980–5. PubMedPMID: 21690347. Pubmed Central PMCID: 3131364.

    Google Scholar 

  24. Aryal S, Hu CM, Fang RH, Dehaini D, Carpenter C, Zhang DE, et al. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine. 2013 Feb 14. PubMed PMID: 23409747.

  25. Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y, et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm. 2010;390(2):234–41. PubMed PMID: 20156537.

    Article  CAS  PubMed  Google Scholar 

  26. Sunoqrot S, Bae JW, Jin SE, Pearson RM, Liu Y, Hong S. Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjug Chem. 2011;22(3):466–74. PubMed PMID: 21344902. Pubmed Central PMCID: 3059376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fang RH, Aryal S, Hu CM, Zhang L. Quick synthesis of lipid polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 2010;26(22):16958–62. PubMed PMID: 20961057.

    Google Scholar 

  28. Xu X, Khan MA, Burgess DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012;423(2):410–8. PubMed PMID: 22207162.

    Article  CAS  PubMed  Google Scholar 

  29. Mohammed AR, Weston N, Coombes AG, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm. 2004;285(1–2):23–34. PubMed PMID: 15488676.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Jiang X, Ashley C, Brinker CJ. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J Am Chem Soc. 2009;131(22):7567–9. PubMed PMID: 19445508. Pubmed Central PMCID: 2724844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Scherer M, Leuthauser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res. 2010;51(7):2001–11. PubMed PMID: 20228220. Pubmed Central PMCID: 2882728.

    Article  CAS  PubMed  Google Scholar 

  32. Mano N, Oda Y, Yamada K, Asakawa N, Katayama K. Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal Biochem. 1997;244(2):291–300. PubMed PMID: 9025946.

    Article  CAS  PubMed  Google Scholar 

  33. Yoo HH, Son J, Kim DH. Liquid chromatographytandem mass spectrometric determination of ceramides and related lipid species in cellular extracts. J Chromatogr B 2006;843(2):327–33. PubMed PMID: 16891163.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was partially supported by the National Institutes of Health (RO1 CA120023 and R21 CA143474); University of Michigan Cancer Center Research Grant (Munn); and University of Michigan Cancer Center Core Grant to DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, P., Stern, S.T. & Sun, D. PLGA/Liposome Hybrid Nanoparticles for Short-Chain Ceramide Delivery. Pharm Res 31, 684–693 (2014). https://doi.org/10.1007/s11095-013-1190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1190-5

KEY WORDS

Navigation