Skip to main content

Advertisement

Log in

Antiangiogenic Effect of Docetaxel and Everolimus as Individual and Dual-Drug-Loaded Micellar Nanocarriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The in vitro inhibitory effect of Docetaxel (DTX) and Everolimus (EVR) alone and together in poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-b-PLA) nanocarriers on angiogenic processes and acute toxicity in mice was evaluated.

Methods

PEG-b-PLA DTX and/or EVR nanocarriers were characterized for size, drug loading, stability, and drug release. Cell proliferation, tubule formation, and migration studies were performed in Human Umbilical Vein Endothelial Cells (HUVEC) and Maximum Tolerated Doses (MTD) studies were in mice.

Results

DTX and EVR loading was 1.93 and 2.00 mg/mL respectively with similar solubilities for dual-drug micelles. All micelles were below 30 nm with diffusion controlled drug release. The IC50 for DTX, EVR micelles were, 6.80 ± 0.67, 18.57 ± 2.86 and 0.65 ± 0.11 nM respectively with a synergistic inhibitory effect for dual-drug nanocarriers. Significant inhibition of tube formation occurred upon treatment with dual-drug nanocarriers as compared to individual micelles. EVR presence in dual-drug nanocarriers was able to significantly increase the inhibition of the migration of HUVEC by DTX. The MTDs for EVR, DTX and dual-drug micelles were 50, 30 and 20 mg/kg for each respectively.

Conclusions

DTX-EVR dual-drug nanocarriers have antiangiogenic effects in vitro mediated through cellular angiogenic process and possess clinically relevant MTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis. 2002;5(4):237–56.

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J. Endogenous angiogenesis inhibitors. APMIS. 2004;112(7–8):496–507.

    Article  CAS  PubMed  Google Scholar 

  4. Li W, Hutnik M, Smith R, Li V. Understanding angiogenesis http://www.angio.org/ua.php (accessed April 16 2013).

  5. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    Article  CAS  PubMed  Google Scholar 

  6. Bocci Gand Loupakis F. The possible role of chemotherapy in antiangiogenic drug resistance. Med Hypotheses. 2012;78(5):646–8.

    Article  Google Scholar 

  7. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.

    Article  CAS  PubMed  Google Scholar 

  8. Miller KD, Sweeney CJ, Sledge Jr GW. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol. 2001;19(4):1195–206.

    CAS  PubMed  Google Scholar 

  9. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A. 2003;100(22):12917–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002;62(23):6938–43.

    CAS  PubMed  Google Scholar 

  11. Hayot C, Farinelle S, De Decker R, Decaestecker C, Darro F, Kiss R, et al. In vitro pharmacological characterizations of the anti-angiogenic and anti-tumor cell migration properties mediated by microtubule-affecting drugs, with special emphasis on the organization of the actin cytoskeleton. Int J Oncol. 2002;21(2):417–25.

    CAS  PubMed  Google Scholar 

  12. Wang J, Lou P, Lesniewski R, Henkin J. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs. 2003;14(1):13–9.

    Article  PubMed  Google Scholar 

  13. Vacca A, Ribatti D, Iurlaro M, Merchionne F, Nico B, Ria R, et al. Docetaxel versus paclitaxel for antiangiogenesis. J Hematother Stem Cell Res. 2002;11(1):103–18.

    Article  CAS  PubMed  Google Scholar 

  14. Murtagh J, Lu H, Schwartz EL. Taxotere-induced inhibition of human endothelial cell migration is a result of heat shock protein 90 degradation. Cancer Res. 2006;66(16):8192–9.

    Article  CAS  PubMed  Google Scholar 

  15. Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, et al. Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res. 2008;14(3):892–900.

    Article  CAS  PubMed  Google Scholar 

  16. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15(5):1612–22.

    Article  CAS  PubMed  Google Scholar 

  17. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671–88.

    Article  CAS  PubMed  Google Scholar 

  18. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–55.

    Article  CAS  PubMed  Google Scholar 

  19. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shin HC, Alani AW, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. 2009;140(3):294–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8(4):1257–65.

    Article  CAS  PubMed  Google Scholar 

  22. Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing Paclitaxel, Rapamycin, and 17-AAG. Mol Cancer Ther. 2012;11(10):2233–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mazzaferro S, Bouchemal K, Gallard JF, Iorga BI, Cheron M, Gueutin C, et al. Bivalent sequential binding of docetaxel to methyl-beta-cyclodextrin. Int J Pharm. 2011;416(1):171–80.

    Article  CAS  PubMed  Google Scholar 

  24. Iwase Yand Maitani Y. Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biol Pharm Bull. 2012;35(6):975–9.

    Article  Google Scholar 

  25. Lee SW, Yun MH, Jeong SW, In CH, Kim JY, Seo MH, et al. Development of docetaxel-loaded intravenous formulation, Nanoxel-PM using polymer-based delivery system. J Control Release. 2011;155(2):262–71.

    Article  CAS  PubMed  Google Scholar 

  26. Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol. 1982;94(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  27. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Investig. 2001;81(4):439–52.

    Article  CAS  PubMed  Google Scholar 

  28. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202.

    Article  CAS  PubMed  Google Scholar 

  29. Chou T-C, Martin N. CompuSyn, CompuSyn software for drug combinations and for general dose-effect analysis, and user’s guide. Paramus: ComboSyn, Inc.; 2007.

    Google Scholar 

  30. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  31. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  Google Scholar 

  32. Pasquier E, Andre N, Braguer D. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr Cancer Drug Targets. 2007;7(6):566–81.

    Article  CAS  PubMed  Google Scholar 

  33. Pazdur R. FDA approval for doctaxel. http://www.cancer.gov/cancertopics/druginfo/fda-docetaxel (accessed April 21 2013).

  34. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–80.

    Article  CAS  PubMed  Google Scholar 

  35. Pazdur R. FDA Approval for Everolimus. http://www.cancer.gov/cancertopics/druginfo/fda-everolimus#Anchor-Breast (accessed April 21 2013).

  36. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(1–3):59–68.

    Article  CAS  PubMed  Google Scholar 

  37. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.

    Article  CAS  PubMed  Google Scholar 

  38. Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA, Schwartz EL. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther. 2002;1(13):1191–200.

    CAS  PubMed  Google Scholar 

  39. Bradshaw-Pierce EL, Eckhardt SG, Gustafson DL. A physiologically based pharmacokinetic model of docetaxel disposition: from mouse to man. Clin Cancer Res. 2007;13(9):2768–76.

    Article  CAS  PubMed  Google Scholar 

  40. Grant DS, Williams TL, Zahaczewsky M, Dicker AP. Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer. 2003;104(1):121–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by the grant from AACP New Pharmacy Faculty Research Award Program, Medical Research Foundation of Oregon New Investigator Grant and Oregon State University-Startup fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. G. Alani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, G.P., Doddapaneni, B.S., Nguyen, D. et al. Antiangiogenic Effect of Docetaxel and Everolimus as Individual and Dual-Drug-Loaded Micellar Nanocarriers. Pharm Res 31, 660–669 (2014). https://doi.org/10.1007/s11095-013-1188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1188-z

KEY WORDS

Navigation