Skip to main content

Advertisement

Log in

Computational Models for Neglected Diseases: Gaps and Opportunities

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Neglected diseases, such as Chagas disease, African sleeping sickness, and intestinal worms, affect millions of the world’s poor. They disproportionately affect marginalized populations, lack effective treatments or vaccines, or existing products are not accessible to the populations affected. Computational approaches have been used across many of these diseases for various aspects of research or development, and yet data produced by computational approaches are not integrated and widely accessible to others. Here, we identify gaps in which computational approaches have been used for some neglected diseases and not others. We also make recommendations for the broad-spectrum integration of these techniques into a neglected disease drug discovery and development workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–27.

    Article  CAS  PubMed  Google Scholar 

  2. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, et al. Chemical genetics of Plasmodium falciparum. Nature. 2010;465:311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, et al. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis. 2009;3:e484.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bettiol E, Samanovic M, Murkin AS, Raper J, Buckner F, Rodriguez A. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis. 2009;3:e384.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Magarinos MP, Carmona SJ, Crowther GJ, Ralph SA, Roos DS, Shanmugam D, et al. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 2012;40:D1118–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40:D1100–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol. 2011;19:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller K. Where tuberculosis meets computation: 10 points of intersection. Biomed Comput Rev. 2012;20–28.

  9. Ekins S, Reynolds R, Kim H, Koo M-S, Ekonomidis M, Talaue M, et al. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol. 2013;20:370–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sarker M, Talcott C, Madrid P, Chopra S, Bunin BA, Lamichhane G, et al. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Pharm Res. 2012;29:2115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duffy BC, Zhu L, Decornez H, Kitchen DB. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg Med Chem. 2012;20:5324–42.

    Article  CAS  PubMed  Google Scholar 

  12. Krueger BA, Weil T, Schneider G. Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. J Comput Aided Mol Des. 2009;23:869–81.

    Article  CAS  PubMed  Google Scholar 

  13. Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon JA. Discovery of a novel binding trench in HIV integrase. J Med Chem. 2004;47:1879–81.

    Article  CAS  PubMed  Google Scholar 

  14. Kubinyi H. Success stories of computer-aided design. In: Ekins S, editor. Computer applications in pharmaceutical research and development. Hoboken: John Wiley and Sons; 2006. p. 377–424.

    Chapter  Google Scholar 

  15. Sundaramurthi JC, Brindha S, Reddy TB, Hanna LE. Informatics resources for tuberculosis–towards drug discovery. Tuberculosis (Edinburgh, Scotland). 2012;92:133–8.

    Article  Google Scholar 

  16. Ekins S, Freundlich JS. Computational models for tuberculosis drug discovery. Methods Mol Biol (Clifton, NJ). 2013;993:245–62.

    Article  CAS  Google Scholar 

  17. Ekins S, Reynolds RC, Franzblau SG, Wan B, Freundlich JS, Bunin BA. Enhancing hit identification in mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLoS ONE. 2013 (in press).

  18. Anderson JW, Sarantakis D, Terpinski J, Kumar TR, Tsai HC, Kuo M, et al. Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorg Med Chem Lett. 2012;23:1022–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alvarez G, Martinez J, Aguirre-Lopez B, Cabrera N, Perez-Diaz L, Gomez-Puyou MT, et al. New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition. J Enzym Inhib Med Chem. 2012. doi:10.3109/14756366.2013.765415.

  20. Pires DE, de Melo-Minardi RC, da Silveira CH, Campos FF, Meira Jr W. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics (Oxford, England). 2013;29:855–61.

    Article  CAS  Google Scholar 

  21. Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, et al. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis. 2012;6:e1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53:475–92.

    Article  CAS  PubMed  Google Scholar 

  23. Suthram S, Sittler T, Ideker T. The Plasmodium protein network diverges from those of other eukaryotes. Nature. 2005;438:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider G. Virtual screening: an endless staircase? Nat Rev. 2010;9:273–6.

    CAS  Google Scholar 

  25. Ekins S, Clark AM, Williams AJ. Open drug discovery teams: a chemistry mobile app for collaboration. Mol Inform. 2012;31:585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunin BA, Ekins S. Alternative business models for drug discovery. Drug Discov Today. 2011;16:643–5.

    Article  PubMed  Google Scholar 

  27. Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.

    Article  CAS  PubMed  Google Scholar 

  28. Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem. 2013;8:313–21.

    Google Scholar 

  29. Reynolds RC, Ananthan S, Faaleolea E, Hobrath JV, Kwong CD, Maddox C, et al. High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2012;92:72–83.

    Article  CAS  PubMed Central  Google Scholar 

  30. Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinburgh, Scotland). 2009;89:354–63.

    Article  CAS  PubMed Central  Google Scholar 

  31. Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2009;89:334–53.

    Article  CAS  PubMed Central  Google Scholar 

  32. Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, Hansell EJ, et al. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des. 2006;67:355–63.

    Article  CAS  PubMed  Google Scholar 

  33. Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, Doyle PS. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob Agents Chemother. 2010;54:3326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009;3:e478.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Andriani G, Chessler AD, Courtemanche G, Burleigh BA, Rodriguez A. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis. 2011;5:e1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem. 2010;53:4891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ekins S, Clark AM, Sarker M. TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. J Cheminform. 2013;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. G-FINDER. https://g-finder.policycures.org/gfinder_report/.

  39. Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, et al. TB database 2010: overview and update. Tuberculosis (Edinburgh, Scotland). 2010;90:225–35.

    Article  Google Scholar 

  40. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem. 2005;29:368–78.

    Article  CAS  PubMed  Google Scholar 

  41. Raman K, Vashisht R, Chandra N. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol Biosyst. 2009;5:1740–51.

    Article  CAS  PubMed  Google Scholar 

  42. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2008;36:D623–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huthmacher C, Hoppe A, Bulik S, Holzhutter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol. 2010;4:120.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Plata G, Hsiao TL, Olszewski KL, Llinas M, Vitkup D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol. 2010;6:408.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, et al. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol. 2009;9:351–8.

    Article  CAS  PubMed  Google Scholar 

  46. Anon. PathCase for metabolic analysis. http://nashua.case.edu/PathwaysMAW_Trypanosoma/web/. Accessed 3 Aug 2013.

  47. Raman K, Bhat AG, Chandra N. A systems perspective of host-pathogen interactions: predicting disease outcome in tuberculosis. Mol Biosyst. 2010;6:516–30.

    Article  CAS  PubMed  Google Scholar 

  48. Wuchty S. Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS ONE. 2011;6:e26960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A. Host pathogen protein interactions predicted by comparative modeling. Protein Sci. 2007;16:2585–96.

    Article  CAS  PubMed  Google Scholar 

  50. Dyer MD, Murali TM, Sobral BW. Computational prediction of host-pathogen protein-protein interactions. Bioinformatics (Oxford, England). 2007;23:i159–166.

    Article  CAS  Google Scholar 

  51. Kushwaha SK, Shakya M. Protein interaction network analysis–approach for potential drug target identification in Mycobacterium tuberculosis. J Theor Biol. 2010;262:284–94.

    Article  CAS  PubMed  Google Scholar 

  52. Cui T, Zhang L, Wang X, He ZG. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics. 2009;10:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramaprasad A, Pain A, Ravasi T. Defining the protein interaction network of human malaria parasite Plasmodium falciparum. Genomics. 2012;99:69–75.

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez-Soca Y, Munteanu CR, Dorado J, Pazos A, Prado-Prado FJ, Gonzalez-Diaz H. Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein-protein interactions. J Proteome Res. 2010;9:1182–90.

    Article  CAS  PubMed  Google Scholar 

  55. Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs Jr WR, et al. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE. 2009;4:e7778.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Computational epidemiologic models developed. http://compepid.tuskegee.edu/CCEBRA/compmod.htm.

  58. Gurarie D, King CH, Wang X. A new approach to modelling schistosomiasis transmission based on stratified worm burden. Parasitology. 2010;137:1951–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raso G, Vounatsou P, McManus DP, Utzinger J. Bayesian risk maps for Schistosoma mansoni and hookworm mono-infections in a setting where both parasites co-exist. Geospat Health. 2007;2:85–96.

    PubMed  PubMed Central  Google Scholar 

  60. Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, Berriman M, et al. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis. 2010;4:e804.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Capriles PV, Guimaraes AC, Otto TD, Miranda AB, Dardenne LE, Degrave WM. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas’ disease treatment. BMC Genomics. 2010;11:610.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5:e1000423.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kinnings SL, Xie L, Fung KH, Jackson RM, Xie L, Bourne PE. The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol. 2010;6:e1000976.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Prathipati P, Ma NL, Manjunatha UH, Bender A. Fishing the target of antitubercular compounds: in silico target deconvolution model development and validation. J Proteome Res. 2009;8:2788–98.

    Article  CAS  PubMed  Google Scholar 

  65. Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol. 2008;2:109.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jensen K, Plichta D, Panagiotou G, Kouskoumvekaki I. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads. Mol Biosyst. 2012;8:1678–85.

    Article  CAS  PubMed  Google Scholar 

  67. Durrant JD, Amaro RE, Xie L, Urbaniak MD, Ferguson MA, Haapalainen A, et al. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology. PLoS Comput Biol. 2010;6:e1000648.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Krasky A, Rohwer A, Schroeder J, Selzer PM. A combined bioinformatics and chemoinformatics approach for the development of new antiparasitic drugs. Genomics. 2007;89:36–43.

    Article  CAS  PubMed  Google Scholar 

  69. Ballester PJ, Mangold M, Howard NI, Robinson RL, Abell C, Blumberger J, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. J R Soc Interface. 2012;9:3196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSyst. 2010;6:840–51.

    Article  CAS  PubMed  Google Scholar 

  71. Periwal V, Rajappan JK, Jaleel AU, Scaria V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Notes. 2011;4:504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scheich C, Szabadka Z, Vertessy B, Putter V, Grolmusz V, Schade M. Discovery of novel MDR-Mycobacterium tuberculosis inhibitor by new FRIGATE computational screen. PLoS ONE. 2011;6:e28428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lamichhane G, Freundlich JS, Ekins S, Wickramaratne N, Nolan S, Bishai WR. Essential metabolites of M. tuberculosis and their mimics. Ambio. 2011;2:e00301–00310.

    Google Scholar 

  74. Marrero-Ponce Y, Iyarreta-Veitia M, Montero-Torres A, Romero-Zaldivar C, Brandt CA, Avila PE, et al. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. J Chem Inf Model. 2005;45:1082–100.

    Article  CAS  PubMed  Google Scholar 

  75. Go Fight Against Malaria. http://gofightagainstmalaria.scripps.edu/.

  76. Freymann DM, Wenck MA, Engel JC, Feng J, Focia PJ, Eakin AE, et al. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem Biol. 2000;7:957–68.

    Article  CAS  PubMed  Google Scholar 

  77. Castillo-Garit JA, Vega MC, Rolon M, Marrero-Ponce Y, Gomez-Barrio A, Escario JA, et al. Ligand-based discovery of novel trypanosomicidal drug-like compounds: in silico identification and experimental support. Eur J Med Chem. 2011;46:3324–30.

    Article  CAS  PubMed  Google Scholar 

  78. Khanna V, Ranganathan S. In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance. BMC Bioinforma. 2011;12 Suppl 13:S25.

    Article  CAS  Google Scholar 

  79. Carmona SJ, Sartor P, Leguizamon MS, Campetella O, Aguero F. A computational pipeline for diagnostic biomarker discovery in the human pathogen Trypanosoma cruzi. BMC Bioinforma. 2010;11 Suppl 10:O11.

    Article  Google Scholar 

  80. Carmona SJ, Sartor PA, Leguizamon MS, Campetella OE, Aguero F. Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features. PLoS ONE. 2012;7:e50748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin HH, Langley I, Mwenda R, Doulla B, Egwaga S, Millington KA, et al. A modelling framework to support the selection and implementation of new tuberculosis diagnostic tools. Int J Tuberc Lung Dis. 2011;15:996–1004.

    Article  PubMed  Google Scholar 

  82. Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine. PLoS Med. 2012;9:e1001157.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee BY, Bacon KM, Shah M, Kitchen SB, Connor DL, Slayton RB. The economic value of a visceral leishmaniasis vaccine in Bihar state, India. Am J Trop Med Hyg. 2012;86:417–25.

    Article  PubMed  Google Scholar 

  84. de Araujo Pereira G, Louzada F, de Fatima Barbosa V, Ferreira-Silva MM, Moraes-Souza H. A general latent class model for performance evaluation of diagnostic tests in the absence of a gold standard: an application to Chagas disease. Computational Math methods Med. 2012;2012:487502.

    Google Scholar 

  85. Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini Jr IM, Dye C, et al. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A. 2009;106:13980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aandahl RZ, Reyes JF, Sisson SA, Tanaka MM. A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Comput Biol. 2012;8:e1002573.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

SE acknowledges discussions and collaborations with colleagues and collaborators at CDD and SRI.

ELP was a consultant for CDD.

SE Consults for Collaborative Drug Discovery on a Bill and Melinda Gates Foundation Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponder, E.L., Freundlich, J.S., Sarker, M. et al. Computational Models for Neglected Diseases: Gaps and Opportunities. Pharm Res 31, 271–277 (2014). https://doi.org/10.1007/s11095-013-1170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1170-9

KEY WORDS

Navigation