Skip to main content

Advertisement

Log in

Molecular Basis of Crystal Morphology-Dependent Adhesion Behavior of Mefenamic Acid During Tableting

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy.

Methods

MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software.

Results

Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups.

Conclusions

Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

API:

Active pharmaceutical ingredient

EtOH:

Ethanol

MA:

Mefenamic acid

PoF:

Pull-off-force

PSD:

Particle size distribution

PXRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

THF:

Tetrahydrofuran

XRD:

X-ray diffraction

REFERENCES

  1. Nada AH, Al-Saidan SM, Mueller BW. Crystal modification for improving the physical and chemical properties of ibuprofen. Pharm Technol. 2005;29:90–4. 100–1.

    Google Scholar 

  2. Rasenack N, Muller BW. Ibuprofen crystals with optimized properties. Int J Pharm. 2002;245:9–24.

    Article  CAS  PubMed  Google Scholar 

  3. Rasenack N, Muller BW. Properties of ibuprofen crystallized under various conditions: a comparative study. Drug Dev Ind Pharm. 2002;28:1077–89.

    Article  CAS  PubMed  Google Scholar 

  4. Nokhodchi A, Bolourtchian N, Dinarvand R. Crystal modification of phenytoin using different solvents and crystallization conditions. Int J Pharm. 2003;250:85–97.

    Article  CAS  PubMed  Google Scholar 

  5. Beckmann W. Nucleation phenomena during the crystallization and precipitation of Abecarnil. J Cryst Growth. 1999;198/199:1307–14.

    Article  CAS  Google Scholar 

  6. Wang WS, Aggarwal MD, Choi J, Gebre T, Shields AD, Penn BG, et al. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes. I. Solvent effects and growth morphology. J Cryst Growth. 1999;198/199:578–82.

    Article  CAS  Google Scholar 

  7. Holmback X, Rasmuson AC. Size and morphology of benzoic acid crystals produced by drowning-out crystallization. J Cryst Growth. 1999;198/199:780–8.

    Article  CAS  Google Scholar 

  8. Braybrook AL, Heywood BR, Karatzas P. An experimental investigation of crystal/solvent interactions in the copper (II) acetate monohydrate/propan-1-ol system. J Cryst Growth. 2002;244:327–32.

    Google Scholar 

  9. Heng JY, Bismarck A, Lee AF, Wilson K, Williams DR. Anisotropic surface chemistry of aspirin crystals. J Pharm Sci. 2007;96:2134–44.

    Article  CAS  PubMed  Google Scholar 

  10. Heng JY, Bismarck A, Williams DR. Anisotropic surface chemistry of crystalline pharmaceutical solids. AAPS PharmSciTech. 2006;7:84.

    Article  PubMed  Google Scholar 

  11. Danesh A, Connell SD, Davies MC, Roberts CJ, Tendler SJ, Williams PM, et al. An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy. Pharm Res. 2001;18:299–303.

    Article  CAS  PubMed  Google Scholar 

  12. Eve JK, Patel N, Luk SY, Ebbens SJ, Roberts CJ. A study of single drug particle adhesion interactions using atomic force microscopy. Int J Pharm. 2002;238:17–27.

    Article  CAS  PubMed  Google Scholar 

  13. Bunker M, Zhang J, Blanchard R, Roberts CJ. Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy. Drug Dev Ind Pharm. 2011;37:875–85.

    Article  CAS  PubMed  Google Scholar 

  14. Wang JJ, Li T, Bateman SD, Erck R, Morris KR. Modeling of adhesion in tablet compression--I. Atomic force microscopy and molecular simulation. J Pharm Sci. 2003;92:798–814.

    Article  CAS  PubMed  Google Scholar 

  15. Adam A, Schrimpl L, Schmidt PC. Some physicochemical properties of mefenamic acid. Drug Dev Ind Pharm. 2000;26:477–87.

    Article  CAS  PubMed  Google Scholar 

  16. Software SHELXTL. Bruker AXS Inc., Madison, WI; 1998.

  17. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J Appl Crystallogr. 1993;26:343–50.

    Article  Google Scholar 

  18. Sheldrick G. A short history of SHELX. Acta Crystallogr A. 2008;64:112–22.

    Article  CAS  PubMed  Google Scholar 

  19. Cambridge Structure Database (CSD). Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/products/csd/ (accessed August 29, 2012).

  20. Enright TP, Hagaman D, Kokoruz M, Coleman N, Sidorenko A. Gradient and patterned polymer brushes by photoinitiated “grafting through” approach. J Polym Sci, Part B: Polym Phys. 2010;48:1616–22.

    Article  CAS  Google Scholar 

  21. Okado J, Okada K, Ishiyama A, Setsuhara Y, Takenaka K. Corrosion resistance of plasma-oxidized stainless steel. Surf Coat Technol. 2008;202:5595–8.

    Article  CAS  Google Scholar 

  22. Syed AA, Denoirjean A, Fauchais P, Labbe JC. On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol. 2006;200:4368–82.

    Article  CAS  Google Scholar 

  23. Donik C, Kocijan A, Grant JT, Jenko M, Drenik A, Pihlar B. XPS study of duplex stainless steel oxidized by oxygen atoms. Corros Sci. 2009;51:827–32.

    Article  CAS  Google Scholar 

  24. McConnell JF, Company FZ. N-(2,3-Xylyl)anthranilic acid, C15H15NO2. Mefenamic acid. Cryst Struct Commun. 1976;5:861–4.

    CAS  Google Scholar 

  25. York P, Ticehurst MD, Osborn JC, Roberts RJ, Rowe RC. Characterization of the surface energetics of milled dl-propranolol hydrochloride using inverse gas chromatography and molecular modeling. Int J Pharm. 1998;174:179–86.

    Article  CAS  Google Scholar 

  26. Mayo SL, Olafson BD, Goddard III WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–909.

    Article  CAS  Google Scholar 

  27. Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology. J Am Chem Soc. 1985;107:8239–53.

    Article  CAS  Google Scholar 

  28. Brunsteiner M, Price SL. Morphologies of organic crystals: sensitivity of attachment energy predictions to the model intermolecular potential. Cryst Growth Des. 2001;1:447–53.

    Article  CAS  Google Scholar 

  29. Cuppen HM, Day GM, Verwer P, Meekes H. Sensitivity of morphology prediction to the force field: paracetamol as an example. Cryst Growth Des. 2004;4:1341–9.

    Article  CAS  Google Scholar 

  30. Prakongpan S, Nagai T. Pharmaceutical interactions in dosage forms and processing. XLV. Solubility of acetaminophen in cosolvents. Chem Pharm Bull. 1984;32:340–3.

    Article  CAS  Google Scholar 

  31. Di Martino P, Censi R, Malaj L, Capsoni D, Massarotti V, Martelli S. Influence of solvent and crystallization method on the crystal habit of metronidazole. Cryst Res Technol. 2007;42:800–6.

    Article  Google Scholar 

  32. Romero S, Escalera B, Bustamante P. Solubility behavior of polymorphs I and II of mefenamic acid in solvent mixtures. Int J Pharm. 1999;178:193–202.

    Article  CAS  PubMed  Google Scholar 

  33. Kakimi K, Niwa T, Danjo K. Influence of compression pressure and velocity on tablet sticking. Chem Pharm Bull. 2010;58:1565–8.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH, et al. Effect of punch tip geometry and embossment on the punch tip adherence of a model ibuprofen formulation. J Pharm Pharmacol. 2004;56:947–50.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH, et al. Effect of lubricant type and concentration on the punch tip adherence of model ibuprofen formulations. J Pharm Pharmacol. 2004;56:299–305.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH. Effects of surface roughness and chrome plating of punch tips on the sticking tendencies of model ibuprofen formulations. J Pharm Pharmacol. 2003;55:1223–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kim JS, Lotz B, Lindrud M, Girard KP, Moore T, Nagarajan K, et al. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org Process Res Dev. 2005;9:894–901.

    Article  CAS  Google Scholar 

  38. Yin SX and Grosso JA. Selecting and Controlling API Crystal Form for Pharmaceutical Development: Strategies and Processes. Curr Opin Drug Discovery Develop. 2008;11:771–7.

  39. Docherty R, Clydesdale G, Roberts KJ, Bennema P. Application of Bravais-Friedel-, I Donnay-Harker, attachment energy I and king models to predicting and understanding the morphology of molecular crystals. J Phys D: Appl Phys. 1991;24:89–99.

    Google Scholar 

  40. Clydesdale G, Roberts KJ, Telfer GB, Saunders VR, Pugh D, Jackson RA, et al. Prediction of the polar morphology of sodium chlorate using a surface-specific attachment energy model. J Phys Chem B. 1998;102:7044–9.

    Article  CAS  Google Scholar 

  41. Podczeck F. Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling. Int J Pharm. 1999;178:93–100.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors thank David Wantuch and Anisha Patel for their help with PXRD; Michael Galella for single crystal X-ray diffraction analysis; Eric Chan for surface energy calculations; Nigora Issamidinova and Mario Hubert for PSD and SEM analyses; and Lynn DiMemmo and Sarah DeLeon for SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit S. Narang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waknis, V., Chu, E., Schlam, R. et al. Molecular Basis of Crystal Morphology-Dependent Adhesion Behavior of Mefenamic Acid During Tableting. Pharm Res 31, 160–172 (2014). https://doi.org/10.1007/s11095-013-1149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1149-6

KEY WORDS

Navigation