Skip to main content
Log in

Mitochondrial Delivery of Doxorubicin by Triphenylphosphonium-Functionalized Hyperbranched Nanocarriers Results in Rapid and Severe Cytotoxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a novel hyperbranched polymer-based nanocarrier for efficient drug delivery to cell mitochondria. Also to study for the first time the cytotoxic effect of doxorubicin via mitochondria-specific delivery system.

Methods

We introduced alkyltriphenylphosphonium groups (TPP) to a poly(ethylene imine) hyperbranched polymer (PEI). We harnessed the hydrophobic assembly of these alkylTPP functionalized PEI molecules into ~100 nm diameter nanoparticles (PEI-TPP) and further encapsulated the chemotherapy agent doxorubicin (DOX), to produce the mitotropic nanoparticles PEI-TPP-DOX.

Results

By administering PEI-TPP-DOX to human prostate carcinoma cells DU145, we found that: (i) PEI-TPP-DOX specifically localized at cell mitochondria as revealed by the inherent DOX fluorescence; (ii) in contrast to the slow apoptotic cell death incurred by DOX over the period of days at micromolar concentrations, PEI-TPP-DOX triggered rapid and severe cytotoxicity within few hours of incubation and at submicromolar incubation concentrations. This cytotoxicity was mainly found to be of a necrotic nature, not precluding autophagy related death pathways to a smaller extent.

Conclusions

We have elaborated a versatile mitotropic nanocarrier; furthermore, using this platform, we have developed a mitochondrial-doxorubicin formulation with exceptional cytocidal properties, even in nanomolar concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

ANTI-A:

Antimycin A

ATR:

Atractyloside potassium salt

CASP8:

Z-IETD-FMK

CASP9:

Z-LEHD-FMK

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

CSA:

Cyclosporine A

DIPEA:

N,N-diisopropylethylamine

DLS:

Dynamic light scattering

DOX:

Doxorubicin

EB:

Ethidium bromide

EPR:

Enhanced permeability and retention

ETC:

Electron transport chain

FBS:

Fetal bovine serum

HBTU:

2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium

HOBt:

N-hydroxybenzotriazole

LDH:

Lactate dehydrogenase

L-NAME:

-nitro-L-arginine methyl ester hydrochloride

MnTmPyP:

Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin

MPTP:

Mitochondrial permeability transition pore

MTT:

Thiazolyl blue tetrazolium bromide

MYXO:

Myxothiazol

NADH:

β-Nicotinamide adenine dinucleotide reduced disodium salt

OLIGO:

Oligomycin

PBS:

Phosphate buffer saline

PEI:

Hyperbranched poly(ethylene imine)

PNNAG:

p-nitrophenyl-N-acetyl-β-d-glucosaminide

ROS:

Reactive oxygen species

ROT:

Rotenone

RUR:

Ruthenium red

STS:

Staurosporine

TB:

Trypan blue

TPP:

Triphenylphosphonium cation

TTFA:

Thenoyltrifluoroacetone

UA:

Uric acid

WORT:

Wortmannin

REFERENCES

  1. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365–451.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007;292(5):H2023–31.

    Article  PubMed  CAS  Google Scholar 

  3. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  4. Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 2008;15(7):1139–46.

    Article  PubMed  CAS  Google Scholar 

  5. DiMauro S. Mitochondrial diseases. Biochim Biophys Acta. 2004;1658(1–2):80–8.

    PubMed  CAS  Google Scholar 

  6. Reardon W, Ross RJ, Sweeney MG, Luxon LM, Pembrey ME, Harding AE, et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet. 1992;340(8832):1376–9.

    Article  PubMed  CAS  Google Scholar 

  7. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:9.

    Article  PubMed  Google Scholar 

  8. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19(9):1088–95.

    Article  PubMed  CAS  Google Scholar 

  9. Weissig V. Mitochondrial delivery of biologically active molecules. Pharm Res. 2011;28(11):2633–8.

    Article  PubMed  CAS  Google Scholar 

  10. Weissig V. From serendipity to mitochondria-targeted nanocarriers. Pharm Res. 2011;28(11):2657–68.

    Article  PubMed  CAS  Google Scholar 

  11. Del Gaizo V, Payne RM. A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther. 2003;7(6):720–30.

    Article  PubMed  Google Scholar 

  12. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem Biol. 2008;15(4):375–82.

    Article  PubMed  CAS  Google Scholar 

  13. Kelley SO, Stewart KM, Mourtada R. Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations. Pharm Res. 2011;28(11):2808–19.

    Article  PubMed  CAS  Google Scholar 

  14. Geisler IM, Chmielewski J. Dimeric cationic amphiphilic polyproline helices for mitochondrial targeting. Pharm Res. 2011;28(11):2797–807.

    Article  PubMed  CAS  Google Scholar 

  15. Cocheme HM, Kelso GF, James AM, Ross MF, Trnka J, Mahendiran T, et al. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion. 2007;7(Suppl):S94–102.

    Article  PubMed  CAS  Google Scholar 

  16. Dessolin J, Schuler M, Quinart A, De Giorgi F, Ghosez L, Ichas F. Selective targeting of synthetic antioxidants to mitochondria: towards a mitochondrial medicine for neurodegenerative diseases? Eur J Pharmacol. 2002;447(2–3):155–61.

    Article  PubMed  CAS  Google Scholar 

  17. Smith RA, Kelso GF, James AM, Murphy MP. Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol. 2004;382:45–67.

    Article  PubMed  CAS  Google Scholar 

  18. Tauskela JS. MitoQ—a mitochondria-targeted antioxidant. IDrugs. 2007;10(6):399–412.

    PubMed  CAS  Google Scholar 

  19. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  PubMed  CAS  Google Scholar 

  20. Lei W, Xie J, Hou Y, Jiang G, Zhang H, Wang P, et al. Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J Photochem Photobiol B. 2010;98(2):167–71.

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez-Carneado J, Van Gool M, Martos V, Castel S, Prados P, de Mendoza J, et al. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc. 2005;127(3):869–74.

    Article  PubMed  CAS  Google Scholar 

  22. Sibrian-Vazquez M, Nesterova IV, Jensen TJ, Vicente MG. Mitochondria targeting by guanidine- and biguanidine-porphyrin photosensitizers. Bioconjug Chem. 2008;19(3):705–13.

    Article  PubMed  CAS  Google Scholar 

  23. Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol. 2007;151(8):1154–65.

    Article  PubMed  CAS  Google Scholar 

  24. Cuchelkar V, Kopeckova P, Kopecek J. Novel HPMA copolymer-bound constructs for combined tumor and mitochondrial targeting. Mol Pharm. 2008;5(5):776–86.

    Article  PubMed  CAS  Google Scholar 

  25. Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release. 2007;121(3):125–36.

    Article  PubMed  CAS  Google Scholar 

  26. Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev. 2007;59(8):729–38.

    Article  PubMed  CAS  Google Scholar 

  27. Weissig V, Cheng SM, D’Souza GG. Mitochondrial pharmaceutics. Mitochondrion. 2004;3(4):229–44.

    Article  PubMed  CAS  Google Scholar 

  28. Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev. 2008;60(13–14):1439–62.

    Article  PubMed  CAS  Google Scholar 

  29. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004;53 Suppl 1:S96–102.

    Article  PubMed  CAS  Google Scholar 

  30. Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials. 2012;33(18):4773–82.

    Article  PubMed  CAS  Google Scholar 

  31. Biswas S, Dodwadkar NS, Sawant RR, Koshkaryev A, Torchilin VP. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target. 2011;19(7):552–61.

    Article  PubMed  CAS  Google Scholar 

  32. Samuelson LE, Dukes MJ, Hunt CR, Casey JD, Bornhop DJ. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem. 2009;20(11):2082–9.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang L, Yao HJ, Yu Y, Zhang Y, Li RJ, Ju RJ, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 2012;33(2):565–82.

    Article  PubMed  CAS  Google Scholar 

  34. Theodossiou TA, Sideratou Z, Tsiourvas D, Paleos CM. A novel mitotropic oligolysine nanocarrier: targeted delivery of covalently bound D-Luciferin to cell mitochondria. Mitochondrion. 2011;11(6):982–6.

    Article  PubMed  CAS  Google Scholar 

  35. Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008;8(8):2559–63.

    Article  PubMed  CAS  Google Scholar 

  36. Huang K, Voss B, Kumar D, Hamm HE, Harth E. Dendritic molecular transporters provide control of delivery to intracellular compartments. Bioconjug Chem. 2007;18(2):403–9.

    Article  PubMed  CAS  Google Scholar 

  37. Lim CS. Organelle-specific targeting in drug delivery and design. Adv Drug Deliv Rev. 2007;59:697.

    Article  CAS  Google Scholar 

  38. Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GG, Torchilin VP, Weissig V. Mitochondriotropic liposomes. J Liposome Res. 2005;15(1–2):49–58.

    PubMed  CAS  Google Scholar 

  39. Weissig V, Boddapati SV, Cheng SM, D’Souza GG. Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria. J Liposome Res. 2006;16(3):249–64.

    Article  PubMed  CAS  Google Scholar 

  40. Malhi SS, Budhiraja A, Arora S, Chaudhari KR, Nepali K, Kumar R, et al. Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int J Pharm. 2012;432(1–2):63–74.

    Article  PubMed  CAS  Google Scholar 

  41. Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, et al. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater. 2012;24(27):3659–65.

    Article  PubMed  CAS  Google Scholar 

  42. Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A. 2012;109(40):16288–93.

    Article  PubMed  CAS  Google Scholar 

  43. Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules. 2012;13(1):239–52.

    Article  PubMed  CAS  Google Scholar 

  44. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727–41.

    Article  PubMed  CAS  Google Scholar 

  45. Landegren U. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods. 1984;67(2):379–88.

    Article  PubMed  CAS  Google Scholar 

  46. Eastman A, Barry MA. Interaction of trans-diamminedichloroplatinum(II) with DNA: formation of monofunctional adducts and their reaction with glutathione. Biochemistry. 1987;26(12):3303–7.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang H, Hoang T, Saeed B, Ng SC. Induction of apoptosis in prostatic tumor cell line DU145 by staurosporine, a potent inhibitor of protein kinases. Prostate. 1996;29(2):69–76.

    Article  PubMed  CAS  Google Scholar 

  48. Cao X, Li Z, Song X, Cui X, Cao P, Liu H, et al. Core-shell type multiarm star poly(ε-caprolactone) with high molecular weight hyperbranched polyethylenimine as core: synthesis, characterization and encapsulation properties. Eur Polym J. 2008;44:1060–70.

    Article  CAS  Google Scholar 

  49. Choucair A, Soo PL, Eisenberg A. Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir. 2005;21(20):9308–13.

    Article  PubMed  CAS  Google Scholar 

  50. Patel D, Chaudhary J. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis. Biochem Biophys Res Commun. 2012;422(1):146–51.

    Article  PubMed  CAS  Google Scholar 

  51. Theodossiou TA, Galanou MC, Paleos CM. Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J Med Chem. 2008;51(19):6067–74.

    Article  PubMed  CAS  Google Scholar 

  52. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61.

    Article  PubMed  CAS  Google Scholar 

  53. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  54. Bachmann E, Zbinden G. Effect of doxorubicin and rubidazone on respiratory function and Ca+2 transport in rat heart mitochondria. Toxicol Lett. 1979;3:29–34.

    Article  CAS  Google Scholar 

  55. Sviryaeva IV, Ruuge EK, Shumaev KB. Effect of adriamycin on superoxide radical generation in isolated heart mitochondria. Biophysics. 2007;52(6):582–6.

    Article  Google Scholar 

  56. Mukhopadhyay P, Rajesh M, Batkai S, Kashiwaya Y, Hasko G, Liaudet L, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296(5):H1466–83.

    Article  PubMed  CAS  Google Scholar 

  57. Fiore C, Tezeguet V, LeSaux A, Roux P, Schwimmer C, Dianoux AC, et al. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie. 1998;80:137–50.

    Article  PubMed  CAS  Google Scholar 

  58. Vieira HL, Haouzi D, El Hamel C, Jacotot E, Belzacq AS, Brenner C, et al. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ. 2000;7(12):1146–54.

    Article  PubMed  CAS  Google Scholar 

  59. Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 2000;19(3):329–36.

    Article  PubMed  CAS  Google Scholar 

  60. Tang DG, Li L, Chopra DP, Porter AT. Extended survivability of prostate cancer cells in the absence of trophic factors: increased proliferation, evasion of apoptosis, and the role of apoptosis proteins. Cancer Res. 1998;58(15):3466–79.

    PubMed  CAS  Google Scholar 

  61. Korge P, Yang L, Yang JH, Wang Y, Qu Z, Weiss JN. Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem. 2011;286(40):34851–7.

    Article  PubMed  CAS  Google Scholar 

  62. Theodossiou TA, Papakyriakou A, Hothersall JS. Molecular modeling and experimental evidence for hypericin as a substrate for mitochondrial complex III; mitochondrial photodamage as demonstrated using specific inhibitors. Free Radic Biol Med. 2008;45(11):1581–90.

    Article  PubMed  CAS  Google Scholar 

  63. Theodossiou TA, Yannakopoulou K, Aggelidou C, Hothersall JS. Tamoxifen subcellular localization; observation of cell-specific cytotoxicity enhancement by inhibition of mitochondrial ETC complexes I and III. Photochem Photobiol. 2012;88(4):1016–22.

    Article  PubMed  CAS  Google Scholar 

  64. Minotti G. Reactions of adriamycin with microsomal iron and lipids. Free Radic Res Commun. 1989;7(3–6):143–8.

    Article  PubMed  CAS  Google Scholar 

  65. Winterbourn CC, Gutteridge JM, Halliwell B. Doxorubicin-dependent lipid peroxidation at low partial pressures of O2. J Free Radic Biol Med. 1985;1(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  66. Osyczka A, Moser CC, Dutton PL. Fixing the Q cycle. Trends Biochem Sci. 2005;30(4):176–82.

    Article  PubMed  CAS  Google Scholar 

  67. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70(2):200–14.

    Article  CAS  Google Scholar 

  68. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    Article  PubMed  CAS  Google Scholar 

  69. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  70. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  PubMed  CAS  Google Scholar 

  71. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1–3):47–61.

    Article  PubMed  CAS  Google Scholar 

  72. Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm. 1999;190(1):49–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodossis A. Theodossiou.

Electronic supplementary material

Table S1. LDH leakage assay results and parameters for various PEI-TPP-DOX concentrations. Table S2. Inhibitors/modulators co-administered with PEI-TPP-DOX. Table S3. The effects of ATR, ANT1, MYXO and WORT on PEI-TPP-DOX cytotoxicity. Figure S1. 1Η NMR (500 MHz, MeOD-d4) spectrum of PEI-TPP. Figure S2. 13C NMR (125.1 MHz, MeOD-d4) spectrum of PEI-TPP. Figure S3. Representative image of DNA Laddering results for PEI-TPP-DOX.

ESM 1

(DOC 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodossiou, T.A., Sideratou, Z., Katsarou, M.E. et al. Mitochondrial Delivery of Doxorubicin by Triphenylphosphonium-Functionalized Hyperbranched Nanocarriers Results in Rapid and Severe Cytotoxicity. Pharm Res 30, 2832–2842 (2013). https://doi.org/10.1007/s11095-013-1111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1111-7

KEY WORDS

Navigation