Skip to main content

Advertisement

Log in

Polymeric Materials for Theranostic Applications

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Nanotechnology has continuously contributed to the fast development of diagnostic and therapeutic agents. Theranostic nanomedicine has encompassed the ongoing efforts on concurrent molecular imaging of biomarkers, delivery of therapeutic agents, and monitoring of therapy response. Among these formulations, polymer-based theranostic agents hold great promise for the construction of multifunctional agents for translational medicine. In this article, we reviewed the state-of-the-art polymeric nanoparticles, from preparation to application, as potential theranostic agents for diagnosis and therapy. We summarized several major polymer formulas, including polymeric conjugate complexes, nanospheres, micelles, and dendrimers for integrated molecular imaging and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    CAS  PubMed  Google Scholar 

  2. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    CAS  PubMed  Google Scholar 

  3. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9.

    CAS  PubMed  Google Scholar 

  4. Del Vecchio S, Zanneti A, Fonti R, Pace L, Salvatore M. Nuclear imaging in cancer theranostics. Q J Nucl Med Mol Imaging. 2007;51:152–63.

    PubMed  Google Scholar 

  5. Chen X. Introducing theranostics journal—from the editor-in-chief. Theranostics. 2011;1:1–2.

    PubMed  Google Scholar 

  6. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2011;62:1064–79.

    Google Scholar 

  7. Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007;129:11653–61.

    CAS  PubMed  Google Scholar 

  8. Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4:713–22.

    CAS  PubMed  Google Scholar 

  9. Lukianova-Hleb EY, Oginsky AO, Samaniego AP, Shenefelt DL, Wagner DS, Hafner JH, et al. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics. 2011;1:3–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2012;2:757–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4:598–606.

    CAS  PubMed  Google Scholar 

  12. Kessinger CW, Togao O, Khemtong C, Huang G, Takahashi M, Gao J. Investigation of in vivo targeting kinetics of alpha(v)beta(3)-specific superparamagnetic nanoprobes by time-resolved MRI. Theranostics. 2011;1:263–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, et al. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc. 2009;131:66–8.

    CAS  PubMed  Google Scholar 

  15. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang MQ. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2006;2:785–92.

    CAS  PubMed  Google Scholar 

  16. Li Y, Li Z, Wang X, Liu F, Cheng Y, Zhang B, et al. In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates. Theranostics. 2012;2:769–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot—Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 2007;7:3065–70.

    CAS  PubMed  Google Scholar 

  18. Yong KT, Wang Y, Roy I, Rui H, Swihart MT, Law WC, et al. Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics. 2012;2(7):681–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics. 2012;2:714–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008;130:11467–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kam NWS, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A. 2005;102:11600–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3:3707–13.

    CAS  PubMed  Google Scholar 

  23. Yang ST, Luo J, Zhou Q, Wang H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics. 2012;2:271–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Yang M, Meng J, Cheng X, Lei J, Guo H, Zhang W, et al. Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics. 2012;2:258–70.

    PubMed Central  PubMed  Google Scholar 

  25. Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2:235–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Seymour L. Synthetic polymers with intrinsic anticancer activity. J Bioact Compat Polym. 1991;6:178–216.

    CAS  Google Scholar 

  27. Breslow DS. Biologically active synthetic polymers. Pure Appl Chem. 1976;46:103–13.

    CAS  Google Scholar 

  28. Duncan R. Drug polymer conjugates—potential for improved thermotherapy. Anti-Cancer Drugs. 1992;3:175–210.

    CAS  PubMed  Google Scholar 

  29. Wang Z, Ho PC. Self-assembled core-shell vascular-targeted nanocapsules for temporal antivasculature and anticancer activities. Small. 2010;6:2576–83.

    CAS  PubMed  Google Scholar 

  30. Wang Z, Ho PC. A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities. Biomaterials. 2010;31:7115–23.

    CAS  PubMed  Google Scholar 

  31. Lu ZR. Molecular imaging of HPMA copolymers: visualizing drug delivery in cell, mouse and man. Adv Drug Deliv Rev. 2010;62:246–57.

    CAS  PubMed  Google Scholar 

  32. Bogdanov AA, Mazzanti M, Castillo G, Bolotin E. Protected graft copolymer (PGC) in imaging and therapy: a platform for the delivery of covalently and non-covalently bound drugs. Theranostics. 2012;2:553–76.

    CAS  PubMed  Google Scholar 

  33. Harrisand JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    Google Scholar 

  34. Zhu L, Xie J, Swierczewska M, Zhang F, Quan Q, Ma Y, et al. Real-time video imaging of protease expression in vivo. Theranostics. 2011;1:18–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci C Polym Symp. 1975;135–153.

  36. Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    CAS  PubMed  Google Scholar 

  37. Wang Z, Chui WK, Ho PC. Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res. 2011;28:585–96.

    PubMed  Google Scholar 

  38. Cao L, Yang ST, Wang X, Luo PG, Liu JH, Sahu S, et al. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics. 2012;2:295–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    CAS  PubMed  Google Scholar 

  40. Chen K, Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics. 2011;1:189–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, et al. Utilization of I-domain of LFA-1 to target drug and marker molecules to leukocytes. Theranostics. 2011;1:277–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 2008;60:876–85.

    CAS  PubMed  Google Scholar 

  43. Dreher MR, Raucher D, Balu N, Colvin OM, Ludeman SM, Chilkoti A. Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J Control Release. 2003;91:31–43.

    CAS  PubMed  Google Scholar 

  44. MacKay JA, Chen MN, McDaniel JR, Liu WG, Simnick AJ, Chilkoti A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater. 2009;8:993–9.

    PubMed Central  PubMed  Google Scholar 

  45. Mohanand P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm. 2010;7:1959–73.

    Google Scholar 

  46. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid) paclitaxel conjugate. Cancer Res. 1998;58:2404–9.

    CAS  PubMed  Google Scholar 

  47. Singer JW, Baker B, De Vries P, Kumar A, Shaffer S, Vawter E, et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX™], a biodegradable polymeric drug conjugate—characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol. 2003;519:81–99.

    CAS  PubMed  Google Scholar 

  48. Singer JW. Paclitaxel poliglumex (XYOTAX™, CT-2103): a macromolecular taxane. J Control Release. 2005;109:120–6.

    CAS  PubMed  Google Scholar 

  49. Singer JW, Shaffer S, Baker B, Bernareggi A, Stromatt S, Nienstedt D, et al. Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anti-Cancer Drugs. 2005;16:243–54.

    CAS  PubMed  Google Scholar 

  50. Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori A, et al. Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res. 2007;13:5855–61.

    CAS  PubMed  Google Scholar 

  51. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, et al. Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release. 2001;74:243–7.

    CAS  PubMed  Google Scholar 

  52. Li C. Poly(L-glutamic acid)—anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54:695–713.

    CAS  PubMed  Google Scholar 

  53. Wen XX, Jackson EF, Price RE, Kim EE, Wu QP, Wallace S, et al. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent. Bioconjug Chem. 2004;15:1408–15.

    CAS  PubMed  Google Scholar 

  54. Lu ZR, Wang XH, Parker DL, Goodrich KC, Buswell HR. Poly(L-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging. Bioconjug Chem. 2003;14:715–9.

    CAS  PubMed  Google Scholar 

  55. Ke TY, Jeong EK, Wang XL, Feng Y, Parker DL, Lu ZR. RGD targeted poly(L-glutamic acid)-cystamine-(Gd-DO3A) conjugate for detecting angiogenesis biomarker alpha(v)beta(3) integrin with MRT1 mapping. Int J Nanomedicine. 2007;2:191–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Jackson EF, Esparza-Coss E, Wen XX, Ng CS, Daniel SL, Price RE, et al. Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. Int J Radiat Oncol Biol Phys. 2007;68:830–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Vaidya A, Sun Y, Ke T, Jeong EK, Lu ZR. Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn Reson Med. 2006;56:761–7.

    CAS  PubMed  Google Scholar 

  58. Tanand M, Lu ZR. Integrin targeted MR imaging. Theranostics. 2011;1:83–101.

    Google Scholar 

  59. Atmaja B, Lui BH, Hu YH, Beck SE, Frank CW, Cochran JR. Targeting of cancer cells using quantum dot-polypeptide hybrid assemblies that function as molecular imaging agents and carrier systems. Adv Funct Mater. 2010;20:4091–7.

    CAS  Google Scholar 

  60. Hudecz F. Design of synthetic branched-chain polypeptides as carriers for bioactive molecules. Anti-Cancer Drugs. 1995;6:171–93.

    CAS  PubMed  Google Scholar 

  61. Hu BH, Su J, Messersmith PB. Hydrogels cross-linked by native chemical ligation. Biomacromolecules. 2009;10:2194–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev. 2010;62:1456–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Liu WG, MacKay JA, Dreher MR, Chen MN, McDaniel JR, Simnick AJ, et al. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J Control Release. 2010;144:2–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Surace C, Arpicco S, Dufay-Wojcicki A, Marsaud V, Bouclier C, Clay D, et al. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm. 2009;6:1062–73.

    CAS  PubMed  Google Scholar 

  65. Zoller M. CD44—physiological expression of distinct isoforms as evidence for organ-specific metastasis formation. J Mol Med. 1995;73:425–38.

    CAS  PubMed  Google Scholar 

  66. Jaracz S, Chen J, Kuznetsova LV, Ojima L. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 2005;13:5043–54.

    CAS  PubMed  Google Scholar 

  67. Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem. 2008;19:1319–25.

    CAS  PubMed  Google Scholar 

  68. Homma A, Sato H, Tamura T, Okamachi A, Emura T, Ishizawa T, et al. Synthesis and optimization of hyaluronic acid-methotrexate conjugates to maximize benefit in the treatment of osteoarthritis. Bioorg Med Chem. 2010;18:1062–75.

    CAS  PubMed  Google Scholar 

  69. Kong JH, Oh EJ, Chae SY, Lee KC, Hahn SK. Long acting hyaluronate—exendin 4 conjugate for the treatment of type 2 diabetes. Biomaterials. 2010;31:4121–8.

    CAS  PubMed  Google Scholar 

  70. Li F, Bae BC, Na K. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug Chem. 2010;21:1312–20.

    CAS  PubMed  Google Scholar 

  71. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141:2–12.

    CAS  PubMed  Google Scholar 

  72. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 2010;31:106–14.

    CAS  PubMed  Google Scholar 

  73. Xu YZ, Fan HJ, Lu CP, Gao GF, Li XB. Synthesis of galabiose-chitosan conjugate as potent inhibitor of streptococcus suis adhesion. Biomacromolecules. 2010;11:1701–4.

    CAS  PubMed  Google Scholar 

  74. Park SY, Baik HJ, Oh YT, Oh KT, Youn YS, Lee ES. A smart polysaccharide/drug conjugate for photodynamic therapy. Angew Chem Int Ed Engl. 2011;50:1644–7.

    CAS  PubMed  Google Scholar 

  75. Hanand J, Li XB. Chemoenzymatic syntheses of sialyl Lewis X-chitosan conjugate as potential anti-inflammatory agent. Carbohydr Polym. 2011;83:137–43.

    Google Scholar 

  76. He XK, Yuan ZX, Wu XJ, Xu CQ, Li WY. Low molecular weight hydroxyethyl chitosan-prednisolone conjugate for renal targeting therapy: synthesis, characterization and in vivo studies. Theranostics. 2012;2:1054–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Varshosaz J, Emami J, Ahmadi F, Tavakoli N, Minaiyan M, Fassihi A, et al. Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system: in vitro/in vivo evaluation in induced ulcerative colitis. J Drug Target. 2001;19:140–53.

    Google Scholar 

  78. Vera DR, Hall DJ, Hoh CK, Gallant P, McIntosh LM, Mattrey RF. Cy5.5-DTPA-galactosyl-dextran: a fluorescent probe for in vivo measurement of receptor biochemistry. Nucl Med Biol. 2005;32:687–93.

    CAS  PubMed  Google Scholar 

  79. Matsunaga K, Hara K, Imamura T, Fujioka T, Takata J, Karube Y. Technetium labeling of dextran incorporating cysteamine as a ligand. Nucl Med Biol. 2005;32:279–85.

    CAS  PubMed  Google Scholar 

  80. Alshamkhaniand A, Duncan R. Synthesis, controlled-release properties and antitumor-activity of alginate-cis-aconityl-daunomycin conjugates. Int J Pharm. 1995;122:107–19.

    Google Scholar 

  81. Morgan SM, Alshamkhani A, Callant D, Schacht E, Woodley JF, Duncan R. Alginates as drug carriers: covalent attachment of alginates to therapeutic agents containing primary amine groups. Int J Pharm. 1995;122:121–8.

    CAS  Google Scholar 

  82. Boontheekul T, Kong HJ, Mooney DG. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–65.

    CAS  PubMed  Google Scholar 

  83. Baldwinand AD, Kiick KL. Polysaccharide modified synthetic polymeric biomaterials. Biopolymers. 2010;94:128–40.

    Google Scholar 

  84. Satchi-Fainaro R, Puder M, Davies JW, Tran HT, Sampson DA, Greene AK, et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med. 2004;10:255–61.

    CAS  PubMed  Google Scholar 

  85. Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, et al. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell. 2005;7:251–61.

    CAS  PubMed  Google Scholar 

  86. Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem Int Ed Engl. 2009;48:2949–54.

    CAS  PubMed  Google Scholar 

  87. Kiessling F, Heilmann M, Lammers T, Ulbrich K, Subr V, Peschke P, et al. Synthesis and characterization of HE-24.8: a polymeric contrast agent for magnetic resonance angiography. Bioconjug Chem. 2006;17:42–51.

    CAS  PubMed  Google Scholar 

  88. Zarabi B, Borgman MP, Zhuo JC, Gullapalli R, Ghandehari H. Noninvasive monitoring of HPMA copolymer-RGDfK conjugates by magnetic resonance imaging. Pharm Res. 2009;26:1121–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR. Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release. 2005;102:191–201.

    CAS  PubMed  Google Scholar 

  90. Pimm MV, Perkins AC, Strohalm J, Ulbrich K, Duncan R. Gamma scintigraphy of the biodistribution of I-123-labelled N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in mice with transplanted melanoma and mammary carcinoma. J Drug Target. 1996;3:375–83.

    CAS  PubMed  Google Scholar 

  91. Wu XM, Jeong EK, Emerson L, Hoffman J, Parker DL, Lu ZR. Noninvasive evaluation of antianglogenic effect in a mouse tumor model by DCE-MRI with Gd-DTPA cystamine copolymers. Mol Pharm. 2010;7:41–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Solorio L, Olear AM, Hamilton JI, Patel RB, Beiswenger AC, Wallace JE, et al. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging. Theranostics. 2012;2:1064–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Yoo HS, Oh JE, Lee KH, Park TG. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res. 1999;16:1114–8.

    CAS  PubMed  Google Scholar 

  94. Wang Z, Chui WK, Ho PC. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm Res. 2009;26:1162–71.

    CAS  PubMed  Google Scholar 

  95. Aryal S, Hu CMJ, Zhang LF. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. Acs Nano. 2010;4:251–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D, et al. Biocompatibility of poly(D, L-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials. 2008;29:1400–11.

    CAS  PubMed  Google Scholar 

  97. Tosi G, Rivasi F, Gandolfi F, Costantino L, Vandelli MA, Forni F. Conjugated poly(D, L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials. 2005;26:4189–95.

    CAS  PubMed  Google Scholar 

  98. Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J Am Chem Soc. 2007;129:8942–3.

    CAS  PubMed  Google Scholar 

  99. Zhang GQ, Palmer GM, Dewhirst M, Fraser CL. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater. 2009;8:747–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release. 2008;128:185–99.

    CAS  PubMed  Google Scholar 

  101. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst. 2002;19:99–134.

    CAS  PubMed  Google Scholar 

  102. Couvreur P, Kante B, Lenaerts V, Scailteur V, Roland M, Speiser P. Tissue distribution of anti-tumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci. 1980;69:199–202.

    CAS  PubMed  Google Scholar 

  103. McCarthy JR, Perez JM, Bruckner C, Weissleder R. Polymeric nanoparticle preparation that eradicates tumors. Nano Lett. 2005;5:2552–6.

    CAS  PubMed  Google Scholar 

  104. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. Translymphatic chemotherapy by intrapleural placement of gelatin sponge containing biodegradable paclitaxel colloids controls lymphatic metastasis in lung cancer. Cancer Res. 2009;69:1174–81.

    CAS  PubMed  Google Scholar 

  105. Ranganathand SH, Wang CH. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29:2996–3003.

    Google Scholar 

  106. Elkharraz K, Faisant N, Guse C, Siepmann F, Arica-Yegin B, Oger JM, et al. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: preparation and physicochemical characterization. Int J Pharm. 2006;314:127–36.

    CAS  PubMed  Google Scholar 

  107. Grayson ACR, Cima MJ, Langer R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials. 2005;26:2137–45.

    CAS  PubMed  Google Scholar 

  108. Xie HY, Xie M, Zhang ZL, Long YM, Liu X, Tang ML, et al. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug Chem. 2007;18:1749–55.

    CAS  PubMed  Google Scholar 

  109. Weissenbock A, Wirth M, Gabor F. WGA-grafted PLGA-nano spheres: preparation and association with Caco-2 single cells. J Control Release. 2004;99:383–92.

    PubMed  Google Scholar 

  110. Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm. 2005;2:357–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Yadav S, van Vlerken LE, Little SR, Amiji M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol. 2009;63:711–22.

    CAS  PubMed  Google Scholar 

  112. Devalapally H, Duan ZF, Seiden MV, Amiji M. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer. 2007;121:1830–8.

    CAS  PubMed  Google Scholar 

  113. Zhang Y, Wang TH. Quantum dot enabled molecular sensing and diagnostics. Theranostics. 2012;2:631–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Liu L, Yong KT, Roy I, Law WC, Ye L, Liu J, et al. Bioconjugated pluronic triblock-copolymer micelle-encapsulated quantum dots for targeted imaging of cancer: in vitro and in vivo studies. Theranostics. 2012;2:705–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Cliftand MJ, Stone V. Quantum dots: an insight and perspective of their biological interaction and how this relates to their relevance for clinical use. Theranostics. 2012;2:668–80.

    Google Scholar 

  116. Kim BYS, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett. 2008;8:3887–92.

    CAS  PubMed  Google Scholar 

  117. Bayles AR, Chahal HS, Chahal DS, Goldbeck CP, Cohen BE, Helms BA. Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome disrupting polymer colloids. Nano Lett. 2010;10:4086–92.

    CAS  PubMed  Google Scholar 

  118. Chen J, Zeng F, Wu SZ, Su J, Tong Z. Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization. Small. 2009;5:970–8.

    CAS  PubMed  Google Scholar 

  119. Li M, Kim HS, Tian L, Yu MK, Jon S, Moon WK. Comparison of two ultrasmall superparamagnetic iron oxides on cytotoxicity and MR imaging of tumors. Theranostics. 2012;2:76–85.

    PubMed Central  PubMed  Google Scholar 

  120. Lee PW, Hsu SH, Wang JJ, Tsai JS, Lin KJ, Wey SP, et al. The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials. 2010;31:1316–24.

    CAS  PubMed  Google Scholar 

  121. Pouponneau P, Leroux JC, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials. 2009;30:6327–32.

    CAS  PubMed  Google Scholar 

  122. Wu CF, Schneider T, Zeigler M, Yu JB, Schiro PG, Burnham DR, et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J Am Chem Soc. 2010;132:15410–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5:738–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Raut SL, Kirthivasan B, Bommana MM, Squillante E, Sadoqi M. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Nanotechnology. 2010;21:395102.

    CAS  PubMed  Google Scholar 

  125. Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30:6947–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. de Rosales RTM, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. Tc-99m-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011;22:455–65.

    Google Scholar 

  127. Lee HY, Li Z, Chen K, Hsu AR, Xu CJ, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)—conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49:1371–9.

    CAS  PubMed  Google Scholar 

  128. Xie J, Chen K, Huang J, Lee S, Wang JH, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63:8122–5.

    CAS  PubMed  Google Scholar 

  130. Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Mol Imaging. 2009;8:87–100.

    CAS  PubMed  Google Scholar 

  131. Fan HM, Olivo M, Shuter B, Yi JB, Bhuvaneswari R, Tan HR, et al. Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J Am Chem Soc. 2010;132:14803–11.

    CAS  PubMed  Google Scholar 

  132. Zrazhevskiy P, Sena M, Gao XH. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39:4326–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zhou M, Zhang R, Huang MA, Lu W, Song SL, Melancon MP, et al. A chelator free multifunctional Cu-64 CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc. 2010;132:15351–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Cheung ENM, Alvares RDA, Oakden W, Chaudhary R, Hill ML, Pichaandi J, et al. Polymer stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater. 2010;22:4728–39.

    CAS  Google Scholar 

  135. Tam JM, Tam JO, Murthy A, Ingram DR, Ma LL, Travis K, et al. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. ACS Nano. 2010;4:2178–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem. 2007;17:2695–9.

    CAS  Google Scholar 

  137. Cho HS, Dong ZY, Pauletti GM, Zhang JM, Xu H, Gu HC, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano. 2010;4:5398–404.

    CAS  PubMed  Google Scholar 

  138. Feng XL, Lv FT, Liu LB, Tang HW, Xing CF, Yang QO, et al. Conjugated polymer nanoparticles for drug delivery and imaging. ACS Appl Mater Interfaces. 2010;2:2429–35.

    CAS  PubMed  Google Scholar 

  139. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61:2549–59.

    CAS  PubMed  Google Scholar 

  140. Trivediand R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5:485–505.

    Google Scholar 

  141. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, et al. Multicenter phase II trial of genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18:2009–14.

    PubMed  Google Scholar 

  142. Xin HL, Chen LC, Gu JJ, Ren XQ, Wei Z, Luo JQ, et al. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(epsilon-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int J Pharm. 2010;402:238–47.

    CAS  PubMed  Google Scholar 

  143. Ma YD, Zheng Y, Liu KX, Tian G, Tian Y, Xu L, et al. Nanoparticles of poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate random copolymer for cancer treatment. Nanoscale Res Lett. 2010;5:1161–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, et al. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol. 2008;26:799–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Huo MR, Zhang Y, Zhou JP, Zou AF, Yu D, Wu YP, et al. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm. 2010;394:162–73.

    CAS  PubMed  Google Scholar 

  146. Saravanakumar G, Choi KY, Yoon HY, Kim K, Park JH, Kwon IC, et al. Hydrotropic hyaluronic acid conjugates: synthesis, characterization, and implications as a carrier of paclitaxel. Int J Pharm. 2010;394:154–61.

    CAS  PubMed  Google Scholar 

  147. Dorris A, Rucareanu S, Reven L, Barrett CJ, Lennox RB. Preparation and characterization of polyelectrolyte-coated gold nanoparticles. Langmuir. 2008;24:2532–8.

    CAS  PubMed  Google Scholar 

  148. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63:8977–83.

    CAS  PubMed  Google Scholar 

  149. Xu PS, Van Kirk EA, Zhan YH, Murdoch WJ, Radosz M, Shen YQ. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chem Int Ed. 2007;46:4999–5002.

    CAS  Google Scholar 

  150. Lee ES, Kim D, Youn YS, Oh KT, Bae YH. A virus-mimetic nanogel vehicle. Angew Chem Int Ed. 2008;47:2418–21.

    CAS  Google Scholar 

  151. Wang J, Pelletier M, Zhang HJ, Xia HS, Zhao Y. High-frequency ultrasound responsive block bopolymer micelle. Langmuir. 2009;25:13201–5.

    CAS  PubMed  Google Scholar 

  152. Jiang XZ, Ge ZS, Xu J, Liu H, Liu SY. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules. 2007;8:3184–92.

    CAS  PubMed  Google Scholar 

  153. Sutton D, Nasongkla N, Blanco E, Gao JM. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    CAS  PubMed  Google Scholar 

  154. Nakayamaand M, Okano T. Intelligent thermoresponsive polymeric micelles for targeted drug delivery. J Drug Deliv Sci Technol. 2006;16:35–44.

    Google Scholar 

  155. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.

    CAS  PubMed  Google Scholar 

  156. Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, et al. Magnetite nanoparticle encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small. 2010;6:1201–4.

    CAS  PubMed  Google Scholar 

  157. Shiraishi K, Kawano K, Maitani Y, Yokoyama M. Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(L-lysine) block copolymers having Gd-DOTA; preparations and their control of T1-relaxivities and blood circulation characteristics. J Control Release. 2010;148:160–7.

    CAS  PubMed  Google Scholar 

  158. Kaida S, Cabral H, Kumagai M, Kishimura A, Terada Y, Sekino M, et al. Visible drug delivery by supramolecular nanocarriers directing to single platformed diagnosis and therapy of pancreatic tumor model. Cancer Res. 2010;70:7031–41.

    CAS  PubMed  Google Scholar 

  159. Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    CAS  PubMed  Google Scholar 

  160. Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed. 2007;46:8836–9.

    CAS  Google Scholar 

  161. Lu PL, Chen YC, Ou TW, Chen HH, Tsai HC, Wen CJ, et al. Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 2011;32:2213–21.

    CAS  PubMed  Google Scholar 

  162. Rapoport N, Gao ZG, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst. 2007;99:1095–106.

    CAS  PubMed  Google Scholar 

  163. Rupp R, Rosenthal SL, Stanberry LR. VivaGel ™ (SPL7013 Gel): a candidate dendrimer microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine. 2007;2:561–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Al-Jamal KT, Al-Jamal WT, Akerman S, Podesta JE, Yilmazer A, Turton JA, et al. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc Natl Acad Sci U S A. 2010;107:3966–71.

    PubMed Central  PubMed  Google Scholar 

  165. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules. 2006;7:572–9.

    CAS  PubMed  Google Scholar 

  166. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106:685–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS, Tjarks W, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther. 2005;4:1423–9.

    CAS  PubMed  Google Scholar 

  168. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, et al. Dendrimer-based metal-chelates—a new class of magnetic resonance imaging constrast agents. Magn Reson Med. 1994;31:1–8.

    CAS  PubMed  Google Scholar 

  169. Kaneshiro TL, Jeong EK, Morrell G, Parker DL, Lu ZR. Synthesis and evaluation of globular Gd-DOTA monoamide conjugates with precisely controlled nanosizes for magnetic resonance angiography. Biomacromolecules. 2008;9:2742–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Cyran CC, Fu YJ, Raatschen HJ, Rogut V, Chaopathomkul B, Shames DM, et al. New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging. 2008;27:581–9.

    PubMed  Google Scholar 

  171. Zhao YL, Liu S, Li YP, Jiang W, Chang YL, Pan S, et al. Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci. 2010;350:44–50.

    CAS  PubMed  Google Scholar 

  172. Wang H, Zheng LF, Peng C, Guo R, Shen MW, Shi XY, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials. 2011;32:2979–88.

    CAS  PubMed  Google Scholar 

  173. Liu G, Wang ZY, Lu J, Xia CC, Gao FB, Gong QY, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials. 2011;32:528–37.

    PubMed  Google Scholar 

  174. Landmark KJ, DiMaggio S, Ward J, Kelly CV, Vogt S, Hong S, et al. Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano. 2008;2:773–83.

    CAS  PubMed  Google Scholar 

  175. Shi XY, Wang SH, Shen MW, Antwerp ME, Chen XS, Li C, et al. Multifunctional dendrimer modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules. 2009;10:1744–50.

    CAS  PubMed  Google Scholar 

  176. Criscione JM, Le BL, Stern E, Brennan M, Rahner C, Papademetris X, et al. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials. 2009;30:3946–55.

    CAS  PubMed  Google Scholar 

  177. Santra S, Kaittanis C, Perez JM. Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm. 2010;7:1209–22.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Niu, G. & Chen, X. Polymeric Materials for Theranostic Applications. Pharm Res 31, 1358–1376 (2014). https://doi.org/10.1007/s11095-013-1103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1103-7

KEY WORDS

Navigation