Skip to main content

Advertisement

Log in

Trimethyl Chitosan-Cysteine Nanoparticles for Systemic Delivery of TNF-α siRNA via Oral and Intraperitoneal Routes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The lack of effective delivery vehicles impedes in vivo applications of siRNA. The trimethyl chitosan-cysteine (TC) nanoparticles (NPs) were developed for in vivo delivery of tumor necrosis factor α (TNF-α) siRNA via oral gavage and intraperitoneal injection.

Methods

The nanoparticles formulated from TC conjugate of 100, 200, and 500 kDa were prepared through ionic gelation with sodium tripolyphosphate, termed as TC100 NPs, TC200 NPs, and TC500 NPs, respectively. They were evaluated in terms of stability, siRNA protection, cellular uptake and TNF-α knockdown in peritoneal exudates macrophage cells (PECs), and in vivo TNF-α silencing in acute hepatic injury mice.

Results

TC100 NPs exhibited poor stability in simulated physiological environment compared to TC200 NPs and TC500 NPs. Compared to TC500 NPs, TC200 NPs could significantly enhance in vitro and in vivo cellular uptake by PECs and facilitate cytoplasmic siRNA release, resulting in high in vitro and in vivo TNF-α knockdown. Superior TNF-α suppressing level was obtained with TC200 NPs via oral gavage rather than intraperitoneal injection.

Conclusions

The efficacies of in vivo TNF-α silencing were related to the molecular weight of TC conjugate and the administration route, which would assist in the rational design of siRNA vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006;2(12):711–9.

    Article  PubMed  CAS  Google Scholar 

  2. Cho H, Chong S, Chung S, Shim C, Kim D. Poly-L-arginine and dextran sulfate-based nanocomplex for epidermal growth factor receptor (EGFR) siRNA delivery: its application for head and neck cancer treatment. Pharm Res. 2012;29(4):1007–19.

    Article  PubMed  CAS  Google Scholar 

  3. Tiemann K, Rossi JJ. RNAi-based therapeutics: current status, challenges and prospects. EMBO Mol Med. 2009;1(3):142–51.

    Article  PubMed  CAS  Google Scholar 

  4. Jensen LB, Griger J, Naeye B, Varkouhi AK, Raemdonck K, Schiffelers R, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res. 2012;29(3):669–82.

    Article  PubMed  CAS  Google Scholar 

  5. Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release. 2012;161(2):554–65.

    Article  PubMed  CAS  Google Scholar 

  6. Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J. 2011;436:351–62.

    Article  PubMed  CAS  Google Scholar 

  7. Troiber C, Wagner E. Nucleic acid carriers based on precise polymer conjugates. Bioconjug Chem. 2011;22(9):1737–52.

    Article  PubMed  CAS  Google Scholar 

  8. Pelet JM, Putnam D. A combinatorial library of bi-functional polymeric vectors for siRNA delivery in vitro. Pharm Res. 2013;30(2):362–76.

    Google Scholar 

  9. Kwok A, Hart SL. Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine. 2011;7(2):210–9.

    Article  PubMed  CAS  Google Scholar 

  10. Schafer J, Hobel S, Bakowsky U, Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials. 2010;31(26):6892–900.

    Article  PubMed  Google Scholar 

  11. Brissault B, Leborgne C, Scherman D, Guis C, Kchler A. Synthesis of poly(propylene glycol)-block-polyethylenimine triblock copolymers for the delivery of nucleic acids. Macromol Biosci. 2011;11(5):652–61.

    Article  PubMed  CAS  Google Scholar 

  12. Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev. 2009;61(9):710–20.

    Article  PubMed  CAS  Google Scholar 

  13. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao X, Yin LC, Ding JY, Tang C, Gu SH, Yin CH, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  15. Marschütz MK, Bernkop-Schnürch A. Thiolated conjugates: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci. 2002;15(4):387–94.

    Article  PubMed  Google Scholar 

  16. Liu WG, Zhang X, Sun SJ, Sun GJ, Yao KD. N-alkylated chitosan as a potential nonviral vector for gene transfection. Bioconjug Chem. 2003;14(4):782–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 2008;10(2):321–8.

    Article  PubMed  CAS  Google Scholar 

  18. Yin LC, Ding JY, He CB, Cui LM, Tang C, Yin CH. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.

    Article  PubMed  CAS  Google Scholar 

  19. Aouadi M, Tesz GJ, Nicoloro SM, Wang MX, Chouinard M, Soto E, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009;458(7242):1180–4.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, He CB, Tang C, Yin CH. Ternary polymeric nanoparticles for oral siRNA delivery. Pharm Res. 2013;30(5):1228–39.

    Article  PubMed  CAS  Google Scholar 

  21. Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharmaceut. 2009;6(3):686–95.

    Article  CAS  Google Scholar 

  22. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater. 2012;11(4):316–22.

    Article  PubMed  CAS  Google Scholar 

  23. Imam ME, Hornof M, Valenta C, Reznicek G, Bernkop-Schnürch A. Evidence for the interpenetration of mucoadhesive polymers into the mucus gel layer. STP Pharm Sci. 2003;13(3):171–6.

    CAS  Google Scholar 

  24. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–63.

    Article  PubMed  CAS  Google Scholar 

  25. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  PubMed  CAS  Google Scholar 

  26. Shim MS, Kwon YJ. Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine. J Control Release. 2009;133(3):206–13.

    Article  PubMed  CAS  Google Scholar 

  27. Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, et al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release. 2010;147(3):342–9.

    Article  PubMed  CAS  Google Scholar 

  28. Cherif MS, Shuaibu MN, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, et al. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine. 2011;29(48):9038–50.

    Article  PubMed  CAS  Google Scholar 

  29. Chertok B, David AE, Yang VC. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release. 2011;155(3):393–9.

    Article  PubMed  CAS  Google Scholar 

  30. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–8.

    Article  PubMed  CAS  Google Scholar 

  31. O’Neill MJ, Bourre L, Melgar S, O’Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today. 2011;16(5–6):203–18.

    Article  PubMed  Google Scholar 

  32. Akhtar S. Oral delivery of siRNA and antisense oligonucleotides. J Drug Target. 2009;17(7):491–5.

    Article  PubMed  CAS  Google Scholar 

  33. Wei W, Wang LY, Yuan L, Yang XD, Su ZG, Ma GH. Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration. Eur J Pharm Biopharm. 2008;69(3):878–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Chunbai He and Lichen Yin contributed equally to this work. The authors are thankful for the financial support from the National Natural Science Foundation of China (No. 81072595 and 51173029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, C., Yin, L., Tang, C. et al. Trimethyl Chitosan-Cysteine Nanoparticles for Systemic Delivery of TNF-α siRNA via Oral and Intraperitoneal Routes. Pharm Res 30, 2596–2606 (2013). https://doi.org/10.1007/s11095-013-1086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1086-4

Key words

Navigation