Skip to main content
Log in

The Shape/Morphology Balance: A Study of Stealth Liposomes via Fractal Analysis and Drug Encapsulation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Fractal analysis was used as a tool in order to study the morphological characteristics of PEGylated liposomes. We report on the morphological characteristics of stealth liposomes composed of DPPC and DPPE-PEG 3000 in two dispersion media using fractal analysis.

Methods

Light scattering techniques were used in order to elucidate the size, the morphology and the surface charge of PEGylated liposomes as a function of PEGylated lipid concentration and temperature. Fluorescence spectroscopy studies revealed a microenvironment of low polarity inside the liposomal membranes.

Results

All formulations were found to retain their physicochemical characteristics for at least 3 weeks. The hydrodynamic radii (Rh) of stealth liposomes were stable in the process of heating up to 50°C; while the fractal dimension values (df) which correspond to their morphology, have been changed during heating. Hence, these results are a first indication of the presence of a heterogeneous microdomain structure of the stealth liposomal system. The amphiphilic drug indomethacin (IND) was successfully encapsulated within the liposomes and led to an increased size of stealth liposomes, while the morphology of liposomal vectors changed significantly at the highest molar ratio of PEGylated lipid.

Conclusions

We can state that this approach can promote a new analytical concept based on the morphological characteristics and quantify the shape of drug carriers complementary to that of the conventional analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

df :

mass fractal

DLCA:

diffusion-limited cluster aggregation

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPE-PEG 3000:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[Methoxy(Polyethylene glycol)-3000]

ds :

surface fractal

IND:

indomethacin

NSAIDs:

nonsteroidal anti-inflammatory drugs

PBS:

phosphate buffer saline

RLCA:

reaction-limited cluster aggregation

References

  1. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: a focus on nanoparticles as drug delivery system. J Neuroimmume Pharmacol. 2006;1:340–50.

    Article  Google Scholar 

  2. Kayser O, Lemke A, Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechol. 2005;6(1):3–5.

    CAS  Google Scholar 

  3. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26(1):74–85.

    Article  PubMed  CAS  Google Scholar 

  4. Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vesicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–8.

    Article  PubMed  CAS  Google Scholar 

  5. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new Frontier in cancer chemotherapy. J Chemother. 2004;16(4):94–7.

    PubMed  CAS  Google Scholar 

  6. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    Article  PubMed  CAS  Google Scholar 

  7. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  PubMed  CAS  Google Scholar 

  8. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305.

    Article  PubMed  CAS  Google Scholar 

  9. Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, GirishModi G, Naidoo D, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Delivery. 2011;2011:939851–70.

    Google Scholar 

  10. Sabín J, Prieto G, Ruso JM, Sarmiento F. Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+. Eur Phys J E. 2007;24:201–10.

    Article  PubMed  Google Scholar 

  11. Sabín J, Prieto G, Ruso JM, Messina PV, Sarmiento F. Aggregation of liposomes in presence of La3+: a study of the fractal dimension. Phys Rev E. 2007;76(011408):1–7.

    Google Scholar 

  12. Roldán-Vargas S, Barnabas-Rodrígez R, Martín-Molina A, Quesada-Pérez M, Estelrich J, Callejas-Fernández J. Growth of lipid vesicle structures: from surface fractals to mass fractals. Phys Rev E. 2008;78(010902(R)):1–4.

    Google Scholar 

  13. Roldán-Vargas S, Barnabas-Rodrígez R, Quesada-Pérez M, Estelrich J, Callejas-Fernández J. Surface fractals in liposome aggregation. Am Phys Soc Phys Rev. 2009;79:1–14.

    Google Scholar 

  14. Pippa N, Pispas S, Demetzos C. The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media. Int J Pharm. 2012;430(1–2):65–73.

    Article  PubMed  CAS  Google Scholar 

  15. Pippa N, Pispas S, Demetzos C. The delineation of the morphology of charged liposomal vectors via fractal analysis in aqueous and biological media: Physicochemical and self-assembly studies. Int J Pharm. 2012;437:264–74.

    Article  PubMed  CAS  Google Scholar 

  16. Derjaguin BV, Landau LD. Theory of the stability of stronglycharged lyophobic sols and of adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URRS. 1941;14:633–62.

    Google Scholar 

  17. Verwey EJB, Overbeek JTHG. Theory of the stability of lyophobic colloids. Amsterdan: Elsevier; 1948. p. 108.

    Google Scholar 

  18. Sabín J, Prieto G, Messina PV, Ruso JM, Hidalgo-Álvarez R, Sarmiento F. On the effect of Ca2+ and La3+ on the colloidal stability of liposomes. Langmuir. 2005;21:10968–75.

    Article  PubMed  Google Scholar 

  19. Sabín J, Prieto G, Ruso JM, Hidalgo-Álvarez R, Sarmiento F. Size and stability of liposomes: a possible role of hydration and osmotic forces. Eur Phys JE. 2006;20:401–8.

    Google Scholar 

  20. Lin MY, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P. Universal reaction—limited colloid aggregation. Nature. 1989;339:360–2.

    Article  CAS  Google Scholar 

  21. Gregory J. Monitoring particle aggregation processes. Adv Colloid Interface Sci. 2009;147–148:109–23.

    Article  PubMed  Google Scholar 

  22. Soh JW, Weinstein IB. Role of COX-indepedent targets of NSAIDs and related coumpounds in cancer prevention and treatment. Prog Exp Tumor Res. 2003;37:261–85.

    Article  PubMed  CAS  Google Scholar 

  23. Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127–37.

    Article  PubMed  CAS  Google Scholar 

  24. Rao CV, Reddy BS. NSAIDs and chemoprevention. Curr Cancer Drug Targets. 2004;4(1):29–42.

    Article  PubMed  CAS  Google Scholar 

  25. Caruso I, Bianchi PG. Gastroscopic evaluation of anti-inflammatory agents. Br Med J. 1980;280(6207):75–8.

    Article  PubMed  CAS  Google Scholar 

  26. Morris AD, Holt SD, Silvoso GR, Hewitt J, Tatum W, Grandione J, et al. Effect of anti-inflammatory drug administration in patients with rheumatoid arthritis. An endoscopic assessment. Scand J Gastroenterol Suppl. 1981;67:131–5.

    PubMed  CAS  Google Scholar 

  27. Zhou Y, Dial EJ, Doyen R, Lichtenberger LM. Effect of indomethacin on bile acid-phospholipid interactions: implication for small intestinal injury induced by nonsteroidal anti-inflammatory drugs. Am J Physiol Gastrointest Liver Physiol. 2010;298(5):G722–731.

    Article  PubMed  CAS  Google Scholar 

  28. Soehngen EC, Godin-Ostro E, Fielder FG, Ginsberg RS, Slusher MA, Weiner AL. Encapsulation of indomethacin in liposomes provides protection against both gastric and intestinal ulceration when orally administered to rats. Arthritis Rheum. 1988;31(3):414–22.

    Article  PubMed  CAS  Google Scholar 

  29. Chen H, Gao J, Wang F, Liang W. Preparation, characterization and pharmacokinetics of liposomes-encapsulated cyclodextrins inclusion complexes for hydrophobic drugs. Drug Deliv. 2007;14(4):201–8.

    Article  PubMed  CAS  Google Scholar 

  30. Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. J Polymer Sci, Part A: Polymer Chem. 2011;50:1226–37.

    Article  Google Scholar 

  31. Jaafar-Maalej C, Charcosset C, Fessi H. A new method for liposome preparation using a membrane contactor. J Liposome Res. 2011;21(3):213–20.

    Article  PubMed  CAS  Google Scholar 

  32. Sugihara H, Yamamoto H, Kawashima Y, Takeuchi H. Effectiveness of submicronized chitosan-coated liposomes in oral absorption of indomethacin. J Liposome Res. 2012;22(1):72–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lim SB, Banerjee A, Onyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release. 2012;163(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  34. Dokoumetzidis A, Karalis V, Iliadis A, Macheras P. The heterogeneous course of drug transit through the body. Trends Pharmacol Sci. 2004;25(3):140–6.

    Article  PubMed  CAS  Google Scholar 

  35. Dokoumetzidis A, Papadopoulou V, Valsami G, Macheras P. Development of a reaction-limited model of dissolution: application to official dissolution tests experiments. Int J Pharm. 2008;355:114–25.

    Article  PubMed  CAS  Google Scholar 

  36. Dokoumetzidis A, Macheras P. The changing face of the rate concept in biopharmaceutical sciences: from classical to fractal and finally to fractional. Pharm Res. 2011;28:1229–32.

    Article  PubMed  CAS  Google Scholar 

  37. Pereira LM. Fractal pharmacokinetics. Comput Math Methods Med. 2010;11(2):161–84.

    Article  PubMed  Google Scholar 

  38. Heutault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–300.

    Article  Google Scholar 

  39. Ganguly R, Asawal VK. Improved micellar hydration and gelation characteristics of PEO-PPO-PEO triblock copolymer solution in the precence of LiCl. J Phys Chem B. 2008;112:7726–31.

    Article  PubMed  CAS  Google Scholar 

  40. Burchard W. Static and dynamic light scattering from branched polymers and biopolymers. Adv Polym Sci. 1983;48:1–124.

    Article  CAS  Google Scholar 

  41. Belsito B, Bartucci R, Sportelli L. Sterically stabilized liposomes of DPPC/DPPE-PEG:2000. A spin label ESR and spectrophotometric study. Biophys Chem. 1998;75(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  42. Silvander M, Hansson P, Edwards K. Liposomal surface potential and bilayer packing as affected by PEG-lipid inclusion. Langmuir. 2000;16:3693–702.

    Article  Google Scholar 

  43. Liu F, Liu D. Long-circulating emulsions (oil in water) as carriers for lipophilic drugs. Pharm Res. 1995;12:1060–4.

    Article  PubMed  CAS  Google Scholar 

  44. Liu F, Liu D. Serum independent liposome uptake by mouse liver. Biochim Biophys Acta. 1996;1278:5–11.

    Article  PubMed  Google Scholar 

  45. Shimanouchi T, Sasaki M, Hiroiwa A, Yoshimoto N, Miyagawa K, Umakoshim H, et al. Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobicity at the membrane interface: a characterization with spectrophotometric measurements. Colloids Surf B Biointerfaces. 2011;88:221–30.

    Article  PubMed  CAS  Google Scholar 

  46. Vogtt K, Joworrek C, Garamus VM, Winter R. Microdomains in lipid vesicles: structure and distribution assessed by small-angle scattreing. J Phys Chem B. 2010;114:5643–8.

    Article  PubMed  CAS  Google Scholar 

  47. Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM. Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem Pharmacol. 1999;57(3):247–54.

    Article  PubMed  CAS  Google Scholar 

  48. Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nat Med. 1995;1(2):154–8.

    Article  PubMed  CAS  Google Scholar 

  49. Lichtenberger LM, Zhou Y, Dial EJ, Raphael RM. NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. J Pharm Pharmacol. 2006;58(11):1421–8.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou Y, Raphael RM. Effect of salicylate on the elasticity, bebding stiffness, and strength of SOPC. Biophys J. 2005;89(3):1789–801.

    Article  PubMed  CAS  Google Scholar 

  51. Lúcio M, Bringezu F, Reis S, Lima JL, Brezesinski G. Binding of nonsteroidal anti-inflammatory drugs to DPPC: structure and thermodynamic aspects. Langmuir. 2008;24(8):4132–9.

    Article  PubMed  Google Scholar 

  52. Nunes C, Brezesinski G, Pereira-Leite C, Lima JL, Reis S, Lúcio M. NSAIDs interactions with membranes: a biophysical approach. Langmuir. 2011;27(17):10847–58.

    Article  PubMed  CAS  Google Scholar 

  53. Srinath P, Vyas SP, Diwan PV. Preparation and pharmacodynamic evaluation of liposomes of indomethacin. Drug Dev Ind Pharm. 2000;26(3):313–21.

    Article  PubMed  CAS  Google Scholar 

  54. Srinath P, Vyas SP, Diwan PV. Long-circulating liposomes of indomethacin in arthritic rats—a biodisposition study. Pharm Acta Helv. 2000;74(4):399–404.

    Article  PubMed  CAS  Google Scholar 

  55. Palakurthi S, Vyas SP, Diwan PV. Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats. Int J Pharm. 2005;290:55–62.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou Y, Cho KJ, Plownan SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem. 2012;287(20):16586–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pippa, N., Psarommati, F., Pispas, S. et al. The Shape/Morphology Balance: A Study of Stealth Liposomes via Fractal Analysis and Drug Encapsulation. Pharm Res 30, 2385–2395 (2013). https://doi.org/10.1007/s11095-013-1082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1082-8

KEY WORDS

Navigation