Skip to main content
Log in

The Co-Delivery of Oxaliplatin Abrogates the Immunogenic Response to PEGylated siRNA-Lipoplex

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In vivo application of siRNA/PEGylated cationic liposome complex (lipoplex) is impeded by two main obstacles: cytokine responses and anti-PEG IgM responses to PEGylated siRNA-lipoplex. Here, we investigated whether co-administration of oxaliplatin (l-OHP) abrogates the cytokine release and anti-PEG IgM production by PEGylated siRNA-lipoplex.

Methods

Free l-OHP was administered either simultaneously or 30 min prior to PEGylated siRNA-lipoplex administration, and cytokine response and anti-PEG IgM production were evaluated. In addition, the effect of the liposomal encapsulation of l-OHP on the immunogenic response of PEGylated siRNA-lipoplex was investigated.

Results

Simultaneous co-administration of free l-OHP with PEGylated siRNA-lipoplex caused a significant reduction in anti-PEG IgM production, along with an increase in the cytokine response. Free l-OHP injected prior to the lipoplex injection, however, successfully reduced cytokine release and anti-PEG IgM response. Platination of siRNA by simultaneously administered free l-OHP might facilitate the dissociation of double-stranded siRNA to single-stranded siRNA, resulting in the inducement of a potent immuno-stimulation of siRNA via endosomal toll-like receptors (TLRs). On the other hand, encapsulation of l-OHP into the siRNA-lipoplex resulted in a reduction of both anti-PEG IgM production and cytokine responses.

Conclusions

Our results suggest that, besides the expected therapeutic efficacy of co-administration, encapsulation of l-OHP into the PEGylated siRNA-lipoplex has great potential for minimizing the immunostimulation of PEGylated siRNA-lipoplex, resulting in a safe, applicable, and compliant treatment regimen for sequential clinical administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

Accelerated blood clearance

CHOL:

Cholesterol

DC-6-14 O,O’:

O,O’- ditetradecanoyl-N- (α-trimethylammonio acetyl) diethanolamine chloride

DOPE:

Dioleoylphospatidyl-ethanolamine

HRP:

Horseradish peroxidase

HSPC:

Hydrogenated soy phosphatidyl choline

IL-6:

Interleukin 6

IFN-γ:

Interferon gamma

l-OHP:

Oxaliplatin

mPEG2000-DSPE:

2-distearoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy (polyethylene glycol)-2000

NF-κB:

Nuclear factor kappa B

POPC:

1-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

RNAi:

RNA interference

siCL:

siRNA-lipoplex

siRNA:

Short interfering RNA

ssiRNA:

Single stranded siRNA

TLRs:

Toll like receptors (TLRs)

Tm:

Thermal melting

TNF-α:

Tumor necrosis factor alpha

REFERENCES

  1. Sibley CR, Seow Y, Wood MJ. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther. 2010;18(3):466–76.

    Article  PubMed  CAS  Google Scholar 

  2. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3(10):737–47.

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein E, Denli AM, Hannon GJ. The rest is silence. RNA. 2001;7(11):1509–21.

    PubMed  CAS  Google Scholar 

  4. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003;4(6):457–67.

    Article  PubMed  CAS  Google Scholar 

  5. Aliabadi HM, Landry B, Sun C, Tang T, Uludag H. Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials. 2012;33(8):2546–69.

    Article  PubMed  CAS  Google Scholar 

  6. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21(3):133–47.

    Article  PubMed  CAS  Google Scholar 

  7. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2–3):75–86.

    Article  PubMed  CAS  Google Scholar 

  8. Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13(9):819–29.

    Article  PubMed  CAS  Google Scholar 

  9. Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11(4):639–52.

    Article  PubMed  CAS  Google Scholar 

  10. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new Frontier in cancer chemotherapy. J Chemother. 2004;16 Suppl 4:94–7.

    PubMed  CAS  Google Scholar 

  11. Symon Z, Peyser A, Tzemach D, Lyass O, Sucher E, Shezen E, et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer. 1999;86(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  12. Roux E, Passirani C, Scheffold S, Benoit JP, Leroux JC. Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Contr Release. 2004;94(2–3):447–51.

    Article  CAS  Google Scholar 

  13. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23(4):457–62.

    Article  PubMed  CAS  Google Scholar 

  14. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lampson GP, Tytell AA, Field AK, Nemes MM, Hilleman MR. Inducers of interferon and host resistance. I. Double-stranded RNA from extracts of Penicillium funiculosum. Proc Natl Acad Sci U S A. 1967;58(2):782–9.

    Article  PubMed  CAS  Google Scholar 

  16. Williams BR. Signal integration via PKR. Sci STKE. 2001;2001(89):re2.

    Article  PubMed  CAS  Google Scholar 

  17. Robbins M, Judge A, MacLachlan I. siRNA and innate immunity. Oligonucleotides. 2009;19(2):89–102.

    Article  PubMed  CAS  Google Scholar 

  18. Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008;354(1–2):56–62.

    Article  PubMed  CAS  Google Scholar 

  19. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292(3):1071–9.

    PubMed  CAS  Google Scholar 

  20. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Contr Release. 2006;112(1):15–25.

    Article  CAS  Google Scholar 

  21. Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomed (Lond). 2008;3(6):761–76.

    Article  CAS  Google Scholar 

  22. Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Contr Release. 2006;115(3):251–8.

    Article  CAS  Google Scholar 

  23. Cui J, Li C, Wang C, Li Y, Zhang L, Yang H. Repeated injection of pegylated liposomal antitumour drugs induces the disappearance of the rapid distribution phase. J Pharm Pharmacol. 2008;60(12):1651–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Contr Release. 2007;122(3):349–55.

    Article  CAS  Google Scholar 

  25. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466–8.

    PubMed  CAS  Google Scholar 

  26. Tagami T, Nakamura K, Shimizu T, Ishida T, Kiwada H. Effect of siRNA in PEG-coated siRNA-lipoplex on anti-PEG IgM production. J Contr Release. 2009;137(3):234–40.

    Article  CAS  Google Scholar 

  27. Hedman HK, Kirpekar F, Elmroth SK. Platinum interference with siRNA non-seed regions fine-tunes silencing capacity. J Am Chem Soc. 2011;133(31):11977–84.

    Article  PubMed  CAS  Google Scholar 

  28. Tagami T, Uehara Y, Moriyoshi N, Ishida T, Kiwada H. Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. J Contr Release. 2011;151(2):149–54.

    Article  CAS  Google Scholar 

  29. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70.

    Article  PubMed  CAS  Google Scholar 

  30. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. 1996;93(7):2879–83.

    Article  PubMed  CAS  Google Scholar 

  31. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tel J, Hato SV, Torensma R, Buschow SI, Figdor CG, Lesterhuis WJ, et al. The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunol Immunother. 2012;61(7):1101–11.

    Article  PubMed  CAS  Google Scholar 

  33. Cavaillon JM. Cytokines and macrophages. Biomed Pharmacother. 1994;48(10):445–53.

    Article  PubMed  CAS  Google Scholar 

  34. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  PubMed  CAS  Google Scholar 

  35. Kasparkova J, Vojtiskova M, Natile G, Brabec V. Unique properties of DNA interstrand cross-links of antitumor oxaliplatin and the effect of chirality of the carrier ligand. Chem. 2008;14(4):1330–41.

    Article  CAS  Google Scholar 

  36. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005;348(5):1079–90.

    Article  PubMed  CAS  Google Scholar 

  37. Girart MV, Fuertes MB, Domaica CI, Rossi LE, Zwirner NW. Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12. J Immunol. 2007;179(6):3472–9.

    PubMed  CAS  Google Scholar 

  38. Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298(2):607–12.

    PubMed  CAS  Google Scholar 

  39. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1(3):297–315.

    Article  CAS  Google Scholar 

  40. Kato T, Natsume A, Toda H, Iwamizu H, Sugita T, Hachisu R, et al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther. 2010;17(11):1363–71.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura K, Abu Lila AS, Matsunaga M, Doi Y, Ishida T, Kiwada H. A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther. 2011;19(11):2040–7.

    Article  PubMed  CAS  Google Scholar 

  42. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 2008;68(19):7975–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank Mr. J.L. McDonald for his helpful advice in preparing this manuscript. This study was supported by the Egyptian government represented in the cultural affairs and missions sector (Ministry of High Education), the Takeda Science Foundation, the Takahashi Industrial and Economic Research Foundation, and a Grant-in-Aid for scientific Research (B) (2339001220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Ishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alaaeldin, E., Abu Lila, A.S., Moriyoshi, N. et al. The Co-Delivery of Oxaliplatin Abrogates the Immunogenic Response to PEGylated siRNA-Lipoplex. Pharm Res 30, 2344–2354 (2013). https://doi.org/10.1007/s11095-013-1078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1078-4

KEY WORDS

Navigation