Skip to main content
Log in

A Solid-State NMR Study of Amorphous Ezetimibe Dispersions in Mesoporous Silica

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this work is to examine the ability of methods based on multinuclear and multidimensional solid-state NMR (SSNMR) to perform detailed characterization of amorphous dispersions of ezetimibe adsorbed on mesoporous silica.

Methods

Ezetimibe was loaded into two types of mesoporous silica with average pore sizes of 2.5 and 21 nm. The mesoporous materials were characterized by powder X-ray diffraction (PXRD), vibrational spectroscopy, differential scanning calorimetry, and 1H, 13C, 19F, and 29Si SSNMR analysis including relaxation time measurements. Interactions between the drug and silica were investigated using 1D and 2D SSNMR methods based on dipolar correlation using cross-polarization (CP) and spin diffusion.

Results

PXRD was used to show the absence of crystalline ezetimibe in the mesoporous materials, and 19F SSNMR was used to assess drug physical state and study mobility. 19F-29Si CP methods were used to directly detect adsorbed ezetimibe. 1H-13C, 1H-19F, and 1H-29Si, and heteronuclear correlation and 1H homonuclear correlation experiments were used to investigate interactions between the drug and silica through 1H environments.

Conclusions

SSNMR methods were able to detect interactions between the drug and the silica substrate. Differences between the drug loaded onto silica with two different pore sizes were observed, including differences in hydrogen bonding environment and molecular mobility. These methods should be useful for characterization of similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.

    Article  PubMed  CAS  Google Scholar 

  2. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5:905–20.

    Article  PubMed  CAS  Google Scholar 

  3. Janssens S, Van den Mooter G. Physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–86.

    Article  PubMed  CAS  Google Scholar 

  4. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5:1003–19.

    Article  PubMed  CAS  Google Scholar 

  5. Qian KK, Bogner RH. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci. 2012;101:444–63.

    Article  PubMed  CAS  Google Scholar 

  6. Miura H, Kanebako M, Shirai H, Nakao H, Inagi T, Terada K. Influence of particle design on oral absorption of poorly water-soluble drug in a silica particle-supercritical fluid system. Chem Pharm Bull. 2011;59:686–91.

    Article  PubMed  CAS  Google Scholar 

  7. Qian KK, Bogner RH. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media. Part 1: thermodynamics of spontaneous amorphization. J Pharm Sci. 2011;100:2801–15.

    Article  PubMed  CAS  Google Scholar 

  8. Qian KK, Suib SL, Bogner RH. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media. Part 2: amorphization capacity and mechanisms of interaction. J Pharm Sci. 2011;100:4674–86.

    Article  PubMed  CAS  Google Scholar 

  9. Azais T, Tourne-Peteilh C, Aussenac F, Baccile N, Coelho C, Devoisselle JM, et al. Solid-state NMR study of ibuprofen confined in MCM-41 material. Chem Mater. 2006;18:6382–90.

    Article  Google Scholar 

  10. Azais T, Hartmeyer G, Quignard S, Laurent G, Babonneau F. Solution state NMR techniques applied to solid state samples: characterization of benzoic acid confined in MCM. J Phys Chem C. 2010;114:8884–91.

    Article  CAS  Google Scholar 

  11. Miura H, Kanebako M, Shirai H, Nakao H, Inagi T, Terada K. Stability of amorphous drug, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, in silica mesopores and measurement of its molecular mobility by solid-state 13C NMR spectroscopy. Int J Pharm. 2011;410:61–7.

    Article  PubMed  CAS  Google Scholar 

  12. Tanabe S, Higashi K, Umino M, Limwikrant W, Yamamoto K, Moribe K. Yellow coloration phenomena of incorporated indomethacin into folded sheet mesoporous materials. Int J Pharm. 2012;429:38–45.

    Article  PubMed  CAS  Google Scholar 

  13. Buntkowsky G, Breitzke H, Adamczyk A, Roelofs F, Emmler T, Gedat E, et al. Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR. Phys Chem Chem Phys. 2007;9:4843–53.

    Article  PubMed  CAS  Google Scholar 

  14. Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, et al. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm. 2010;7:1667–91.

    Article  PubMed  CAS  Google Scholar 

  15. Patel JR, Carlton RA, Yuniatine F, Needham TE, Wu L, Vogt FG. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2011;101:641–63.

    Article  PubMed  Google Scholar 

  16. Vogt FG, Williams GR. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and X-ray diffraction. Pharm Res. 2012;29:1866–81.

    Article  PubMed  CAS  Google Scholar 

  17. Khanderia U, Regal RE, Rubenfire M, Boyden T. The ezetimibe controversy: implications for clinical practice. Ther Adv Cardiovasc Dis. 2011;5:199–208.

    Article  PubMed  CAS  Google Scholar 

  18. Gulsun T, Gursoy RN, Oner L. Design and characterization of nanocrystal formulations containing ezetimibe. Chem Pharm Bull. 2011;59:41–5.

    Article  PubMed  CAS  Google Scholar 

  19. Kiekens F, Eelen S, Verheyden L, Daems T, Martens J, van den Mooter G. Use of ordered mesoporous silica to enhance the oral bioavailability of ezetimibe in dogs. J Pharm Sci. 2012;101:1136–44.

    Article  PubMed  CAS  Google Scholar 

  20. Pawley GS. Unit-cell refinement from powder diffraction scans. J Appl Cryst. 1981;14:357–61.

    Article  CAS  Google Scholar 

  21. Ravikumar K, Sridhar B. Ezetimibe monohydrate. Acta Crystallogr E. 2005;61:o2907–9.

    Article  CAS  Google Scholar 

  22. McCusker LB, von Dreele RB, Cox DE, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Cryst. 1999;32:36–50.

    Article  CAS  Google Scholar 

  23. Baldinozzi J, Berar JF. Modeling of line-shape asymmetry in powder diffraction. J Appl Cryst. 1993;26:128–9.

    Article  Google Scholar 

  24. Metz G, Wu X, Smith SO. Ramped-amplitude cross-polarization in magic-angle spinning NMR. J Magn Reson A. 1994;110:219–27.

    Article  CAS  Google Scholar 

  25. Antzutkin ON. Sideband manipulation in magic-angle spinning NMR. Prog Nucl Magn Reson Spectrosc. 1999;35:203–66.

    Article  CAS  Google Scholar 

  26. Opella SJ, Frey MH. Selection of non-protonated carbon resonances in solid-state NMR. J Am Chem Soc. 1979;101:5854–6.

    Article  CAS  Google Scholar 

  27. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and powders. J Magn Reson. 2000;142:97–101.

    Article  PubMed  CAS  Google Scholar 

  28. Hoffner FM, Delmotte L, Kessler H. A 19F/29Si CP MAS NMR study of microporous solids synthesized in fluoride medium. Zeolites. 1993;13:60–3.

    Article  Google Scholar 

  29. Lesage A, Sakellariou D, Hediger S, Elena B, Charmont P, Steuernagel S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson. 2003;163:105–13.

    Article  PubMed  CAS  Google Scholar 

  30. Earl WL, Vanderhart DL. Measurement of 13C chemical shifts in solids. J Magn Reson. 1982;48:35–54.

    CAS  Google Scholar 

  31. Harris RK, Becker ED, de Menezes SM C, Goodfellow R, Granger P. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001). Pure Appl Chem. 2001;73:1795–818.

    Article  CAS  Google Scholar 

  32. Yates JR, Dobbins SE, Pickard CJ, Mauri F, Ghi PY, Harris RK. A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen. Phys Chem Chem Phys. 2005;7:1402–7.

    Article  PubMed  CAS  Google Scholar 

  33. Aliev AE, Harris KDM, Apperley DC. High-resolution solid-state 13C and 29Si NMR investigations of the dynamic properties of tetrakis(trimethysilyl)silane. J Chem Soc Chem Commun. 1993; 251–53.

  34. Torchia DA. The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J Magn Reson. 1978;30:613–6.

    CAS  Google Scholar 

  35. Stejskal EO, Memory JD. High resolution NMR in the solid state. New York: Oxford University Press; 1994. p. 83.

    Google Scholar 

  36. van Rossum BJ, Förster H, de Groot HJM. High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J Magn Reson. 1997;124:516–9.

    Article  Google Scholar 

  37. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92:508–17.

    Article  CAS  Google Scholar 

  38. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756–64.

    Article  CAS  Google Scholar 

  39. Boese AD, Handy NC. A new parametrization of exchange-correlation generalized gradient approximation functionals. J Chem Phys. 2001;114:5497–503.

    Article  CAS  Google Scholar 

  40. Flurchick KM. DFT functionals and molecular geometries. Chem Phys Lett. 2006;421:540–3.

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, revision B.01. Wallingford: Gaussian, Inc.; 2010.

    Google Scholar 

  42. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  43. Chesnut DB, Moore KD. Locally dense basis sets for chemical shift calculations. J Comput Chem. 1989;10:648–59.

    Article  CAS  Google Scholar 

  44. Bellamy LJ. Advances in infrared group frequencies. New York: Meuthen & Co.; 1968. p. 173–4.

    Google Scholar 

  45. Paoloni L, Patta A, Mangano F. The hydrogen bond with carbonyl groups: theoretical study of the correlation between the X-H stretching frequency and the C=O group properties. J Mol Struct. 1975;27:123–37.

    Article  CAS  Google Scholar 

  46. Mellaerts R, Aerts CA, Humbeeck JV, Augustijns P, Van den Mooter G, Martens JA. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun. 2007;13:1375–7.

    Article  Google Scholar 

  47. Kalinowski HO, Berger S, Braun S. Carbon-13 NMR spectroscopy. New York: Wiley; 1987.

    Google Scholar 

  48. Stothers JB. Carbon-13 NMR spectroscopy. New York: Academic; 1972. p. 299.

    Google Scholar 

  49. Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. New York: Wiley; 1987.

    Google Scholar 

  50. Bertani P, Raya J, Reinheimer P, Gougeon R, Delmotte L, Hirschinger J. 19F/29Si distance determination in fluoride-containing octadecasil by Hartmann-Hahn cross-polarization under fast magic-angle spinning. Solid State Nucl Magn Reson. 1999;13:219–29.

    Article  PubMed  CAS  Google Scholar 

  51. Xue X, Kanzaki M. Proton distributions and hydrogen bonding in crystalline and glassy hydrous silicates and related inorganic materials: insights from high-resolution solid-state nuclear magnetic resonance spectroscopy. J Am Ceram Soc. 2009;92:2803–30.

    Article  CAS  Google Scholar 

  52. Hu JZ, Kwak JH, Herrera JE, Wang Y, Peden CH. Line narrowing in 1H MAS spectrum of mesoporous silica by removing adsorbed H2O using N2. Solid State Nucl Magn Reson. 2005;27:200–5.

    Article  PubMed  CAS  Google Scholar 

  53. Io T, Fukami T, Yamamoto K, Suzuki T, Xu J, Tomono K, et al. Homogeneous nanoparticles to enhance the efficiency of a hydrophobic drug, antihyperlipidemic probucol, characterized by solid-state NMR. Mol Pharm. 2010;7:299–305.

    Article  PubMed  CAS  Google Scholar 

  54. Vogt FG, Strohmeier M. 2D solid-state NMR analysis of inclusion in drug-cyclodextrin complexes. Mol Pharm. 2012;9:3357–74.

    Article  PubMed  CAS  Google Scholar 

  55. Wiench JW, Lin VSY, Pruski M. 29Si NMR in solid state with CPMG acquisition under MAS. J Magn Reson. 2008;193:233–42.

    Article  PubMed  CAS  Google Scholar 

  56. Qian KK, Zhou W, Xu X, Udovic T. Characterization of medicinal compounds confined in porous media by neutron vibrational spectroscopy and first-principles calculations: a case study with ibuprofen. Pharm Res. 2012;29:2432–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick G. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, F.G., Roberts-Skilton, K. & Kennedy-Gabb, S.A. A Solid-State NMR Study of Amorphous Ezetimibe Dispersions in Mesoporous Silica. Pharm Res 30, 2315–2331 (2013). https://doi.org/10.1007/s11095-013-1075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1075-7

KEY WORDS

Navigation