Skip to main content

Advertisement

Log in

CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging.

Methods

Magnetic glyconanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 was evaluated in vitro by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model.

Results

The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments.

Conclusions

Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

ELISA:

Enzyme linked immunosorbent assay

FITC:

Fluorescein isothiocyanate

FSPGR:

Fast spoiled gradient recalled

HA:

Hyaluronan

IL:

Interleukin

LDL:

Low density lipoprotein

mAb:

Monoclonal antibody

MRI:

Magnetic resonance imaging

NPs:

Nanoparticles

ROI:

Region of interest

siRNA:

Small interfering RNA

SPION:

Superparamagnetic iron oxide nanoparticle

TEM:

Transmission electron microscopy

TNF-α:

Tumor necrosis factor-α

References

  1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  2. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.

    Article  CAS  PubMed  Google Scholar 

  3. Canet-Soulas E, Letourneur D. Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magn Reson Mater Phy. 2007;20:129–42.

    Article  CAS  Google Scholar 

  4. Briley-Saebo KC, Mulder WJM, Venkatesh Mani V, Hyafil F, Amirbekian V, Aguinaldo JGS, et al. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Mag Res Imag. 2007;26:460–79.

    Article  Google Scholar 

  5. Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis. Emerging applications. J Am Coll Cardiol. 2006;47:1328–38.

    Article  CAS  PubMed  Google Scholar 

  6. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Nat Acad Sci U S A. 2007;104:961–6.

    Article  CAS  Google Scholar 

  7. Nair SA, Kolodziej AF, Bhole G, Greenfield MT, McMurry TJ, Caravan P. Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus. Angew Chem Int Ed. 2008;47:4918–21.

    Article  CAS  Google Scholar 

  8. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted Fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC: Cardiovasc Imaging. 2008;1:624–34.

    Article  Google Scholar 

  9. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial avb3 integrin-targeted Fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol. 2008;180:830–5.

    Article  CAS  PubMed  Google Scholar 

  11. Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 2006;34:23–38.

    Article  PubMed  Google Scholar 

  12. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9.

    Article  PubMed  Google Scholar 

  13. Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis. MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71.

    Article  CAS  PubMed  Google Scholar 

  14. Durand E, Raynaud JS, Bruneval P, Brigger I, Al Haj Zen A, Mandet C, et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res. 2007;44:119–28.

    Article  CAS  PubMed  Google Scholar 

  15. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  16. Hyafil F, Laissy J-P, Mazighi M, Tchétché D, Louedec L, Adle-Biassette H, et al. Ferumoxtran-10–Enhanced MRI of the hypercholesterolemic rabbit aorta relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol. 2006;26:176–81.

    Article  CAS  PubMed  Google Scholar 

  17. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol. 1989;152:167–73.

    Article  CAS  Google Scholar 

  18. Singh N, Kenkins GJS, Asadi R, Doak SH. Potential toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION). Nano Rev. 2010;1:5358.

    Article  Google Scholar 

  19. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, Von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28:77–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion Molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114:1504–11.

    Article  CAS  PubMed  Google Scholar 

  21. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005;96:327–36.

    Article  CAS  PubMed  Google Scholar 

  22. Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) contrast particles for Magnetic Resonance Imaging (MRI). Biomed Microdevices. 2007;9:719–27.

    Article  PubMed  Google Scholar 

  23. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med. 2005;54:718–24.

    Article  PubMed  Google Scholar 

  24. Tu C, Ng TSC, Sohi HK, Palko HA, House A, Jacobs RE, et al. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32:7209–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Radermacher KA, Beghein N, Boutry S, Laurent S, Elst LV, Muller RN, et al. In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin a multimodal approach using MR Imaging and EPR Spectroscopy. Invest Radiol. 2009;44:398–404.

    Article  CAS  PubMed  Google Scholar 

  26. Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjugate Chem. 2002;13:122–7.

    Article  CAS  Google Scholar 

  27. Crowther MA. Pathogenesis of Atherosclerosis. Hematol. 2005:436–41.

  28. Zhao L, Lee E, Zukas AM, Middleton MK, Kinder M, Acharya PS, et al. CD44 expressed on both bone marrow–derived and non–bone marrow–derived cells promotes atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1283–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao L, Hall JA, Levenkova N, Lee E, Middleton MK, Zukas AM, et al. CD44 regulates vascular gene expression in a proatherogenic environment. Arterioscler Thromb Vasc Biol. 2007;27:886–92.

    Article  CAS  PubMed  Google Scholar 

  30. Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest. 2001;108:1031–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hägg D, Sjöberg S, Hultén LM, Fagerberg B, Wiklund O, Rosengren A, et al. Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6–CD44 feedback loop? Atherosclerosis. 2007;190:291–7.

    Article  PubMed  Google Scholar 

  32. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44. J Clin Invest. 1996;98:2403–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jain M, He Q, Lee W-S, Kashiki S, Foster LC, Tsai J-C, et al. Role of CD44 in the reaction of vascular smooth muscles cells to arterial wall injury. J Clin Invest. 1996;97:596–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Puré E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med. 2001;7:213–21.

    Article  PubMed  Google Scholar 

  35. Krettek A, Sukhova GK, Schönbeck U, Libby P. Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm. Possible role for a feedback loop in endothelial cells. Am J Pathol. 2004;165:1571–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions. Insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22:1642–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kinscherf R, Wagner M, Kamencic H, Bonaterra GA, Hou D, Schiele RA, et al. Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits. Atherosclerosis. 1999;144:33–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature Rev Mol Cell Biol. 2003;4:33–45.

    Article  CAS  Google Scholar 

  39. Lapcik Jr L, Lapcik L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties, and applications. Chem Rev. 1998;98:2663–84.

    Article  CAS  PubMed  Google Scholar 

  40. Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939–48.

    Article  CAS  PubMed  Google Scholar 

  41. Levesque MC, Haynes BF. In vitro culture of human peripheral blood monocytes induces hyaluronan binding and up-regulates monocyte variant CD44 lsoform expression. J Immunol. 1996;156:1557–65.

    CAS  PubMed  Google Scholar 

  42. Brown KL, Maiti A, Johnson P. Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14 peripheral blood monocytes. J Immunol. 2001;167:5367–74.

    Article  CAS  PubMed  Google Scholar 

  43. Maiti A, Maki G, Johnson P. TNF-alpha induction of CD44-mediated leukocyte adhesion by sulfation. Science. 1998;282:941–3.

    Article  CAS  PubMed  Google Scholar 

  44. DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 1997;278:672–5.

    Article  CAS  PubMed  Google Scholar 

  45. DeGrendele HC, Estess P, Picker LJ, Siegelman MH. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med. 1996;183:1119–30.

    Article  CAS  PubMed  Google Scholar 

  46. El-boubbou K, Huang X. Glyco-nanomaterials: translating insights from the “Sugar-Code” to biomedical applications. Curr Med Chem. 2011;18:2060–78.

    Article  CAS  PubMed  Google Scholar 

  47. Palmacci S, Josephson L, Groman EV. Synthesis of Polysaccharide Covered Superparamagnetic Oxide Colloids. US Patent WO/1995/005669. 1995.

  48. Kamat M, El-boubbou K, Zhu D, Lansdell T, Lu X, Li W, et al. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjugate Chem. 2010;21:2128–35.

    Article  CAS  Google Scholar 

  49. El-Dakdouki MH, El-boubbou K, Zhu DC, Huang X. A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv. 2011;1:1449–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. El-Dakdouki MH, Zhu DC, El-boubbou K, Kamat M, Chen J, Li W, et al. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules. 2012;13:1144–51.

    Article  CAS  PubMed  Google Scholar 

  51. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics. 2008;5:505–15.

    Article  CAS  Google Scholar 

  52. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32.

    Article  PubMed  Google Scholar 

  53. Bouïs D, Hospers GAP, Meijer C, Molema G, Mulder NH. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 2001;4:91–102.

    Article  PubMed  Google Scholar 

  54. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dhir R, Gau JT, Krill D, Bastacky S, Bahnson RR, Cooper DL, et al. CD44 expression in benign and neoplastic human prostates. Mol Diagn. 1997;2:197–204.

    Article  CAS  PubMed  Google Scholar 

  56. Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Lab Animals. 2004;38:246–56.

    Article  CAS  Google Scholar 

  57. Cichy J, Puré E. The liberation of CD44. J Cell Biol. 2003;161:839–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. El-Dakdouki MH, Huang X. Biological applications of hyaluronic acid functionalized nanomaterials. In X. Huang and J. Barchi (eds.), Petite and Sweet: Glyco-nanotechnology as a bridge to new medicines, ACS Symposium Series, 2011, pp. 181–213 and references cited therein.

  59. Platt VM, Szoka Jr FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharmaceutics. 2008;5:474–86. references cited therein.

    Article  CAS  Google Scholar 

  60. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32:1880–9.

    Article  CAS  PubMed  Google Scholar 

  61. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31:7106–14.

    Article  CAS  PubMed  Google Scholar 

  62. Bachar G, Cohen K, Hod R, Feinmesser R, Mizrachi A, Shpitzer T, et al. Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials. 2011;32:4840–8.

    Article  CAS  PubMed  Google Scholar 

  63. Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the CD44–hyaluronan complex provide insight into a fundamental carbohydrate protein interaction. Nat Struc Mol Biol. 2007;14:234–9.

    Article  CAS  Google Scholar 

  64. Tammi R, Rilla K, Pienimäki JP, MacCallum D, Hogg M, Luukkonen M, et al. Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem. 2001;276:35111–22.

    Article  CAS  PubMed  Google Scholar 

  65. Tammi R, MacCallum D, Hascall VC, Pienimäki JP, Hyttinen M, Tammi M. Hyaluronan bound to CD44 on keratinocytes is displaced by hyaluronan decasaccharides and not hexasaccharides. J Biol Chem. 1998;273:28878–88.

    Article  CAS  PubMed  Google Scholar 

  66. Eliaz RE, Nir S, Marty C, Szoka Jr FC. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res. 2004;64:711–8.

    Article  CAS  PubMed  Google Scholar 

  67. Luo Y, Bernshaw NJ, Lu ZR, Kopecek J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.

    Article  CAS  PubMed  Google Scholar 

  68. Eliaz RE, Szoka Jr FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61:2592–601.

    CAS  PubMed  Google Scholar 

  69. Lee JL, Wang MJ, Sudhir PR, Chen JY. CD44 engagement promotes matrix-derived survival through the CD44-Src-Integrin axis in lipid rafts. Mol Cell Biol. 2008;28:5710–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Thankamony SP, Knudson W. Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. J Biol Chem. 2006;281:34601–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Qhattal HSS, Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharmaceutics. 2011;8:1233–46.

    Article  CAS  Google Scholar 

  72. Ahrens T, Assmann V, Fieber C, Termeer CC, Herrlich P, Hofmann M, et al. CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol. 2001;116:93–101.

    Article  CAS  PubMed  Google Scholar 

  73. Tang TY, Howarth SPS, Miller SR, Graves MJ, Patterson AJ, U-King-Im J-M, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Card. 2009;53:2039–50.

    Article  CAS  Google Scholar 

  74. Fayad ZA, Razzouk L, Briley-Saebo KC, Mani V. Iron oxide magnetic resonance imaging for atherosclerosis therapeutic evaluation. Still “Rusty?”. J Am Coll Card. 2009;53:2051–2.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosures

Mohammad H. El-Dakdouki, Kheireddine El-Boubbou and Medha Kamat contributed equally to this work. We would like to thank the Department of Radiology, Michigan State University for the very generous support towards access of the MRI scanner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David C. Zhu or Xuefei Huang.

Electronic supplementary material

ESM 1

(DOC 6604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Dakdouki, M.H., El-Boubbou, K., Kamat, M. et al. CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging. Pharm Res 31, 1426–1437 (2014). https://doi.org/10.1007/s11095-013-1021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1021-8

KEY WORDS

Navigation