Pharmaceutical Research

, Volume 30, Issue 9, pp 2174–2187 | Cite as

Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis

  • Mitchell R. McGill
  • Hartmut JaeschkeEmail author
Expert Review


Acetaminophen (APAP) is one of the most widely used drugs. Though safe at therapeutic doses, overdose causes mitochondrial dysfunction and centrilobular necrosis in the liver. The first studies of APAP metabolism and activation were published more than 40 years ago. Most of the drug is eliminated by glucuronidation and sulfation. These reactions are catalyzed by UDP-glucuronosyltransferases (UGT1A1 and 1A6) and sulfotransferases (SULT1A1, 1A3/4, and 1E1), respectively. However, some is converted by CYP2E1 and other cytochrome P450 enzymes to a reactive intermediate that can bind to sulfhydryl groups. The metabolite can deplete liver glutathione (GSH) and modify cellular proteins. GSH binding occurs spontaneously, but may also involve GSH-S-transferases. Protein binding leads to oxidative stress and mitochondrial damage. The glucuronide, sulfate, and GSH conjugates are excreted by transporters in the canalicular (Mrp2 and Bcrp) and basolateral (Mrp3 and Mrp4) hepatocyte membranes. Conditions that interfere with metabolism and metabolic activation can alter the hepatotoxicity of the drug. Recent data providing novel insights into these processes, particularly in humans, are reviewed in the context of earlier work, and the effects of altered metabolism and reactive metabolite formation are discussed. Recent advances in the diagnostic use of serum adducts are covered.


acetaminophen drug metabolism drug transporters hepatotoxicity nuclear receptors 



Work in the authors’ laboratory was supported in part by National Institutes of Health Grants AA12916 and DK070195 and by grants from the National Center for Research Resources (5P20RR021940-07) and the National Institute of General Medical Sciences (8 P20 GM103549-07) from the National Institutes of Health. M.R. McGill was supported by the “Training Program in Environmental Toxicology” (T32 ES007079-26A2) from the National Institute of Environmental Health Sciences. The authors declare that there are no conflicts of interest.


  1. 1.
    Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA. 2002;287:337–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Krenzelok EP, The FDA. Acetaminophen Advisory Committee Meeting—what is the future of acetaminophen in the United States? The perspective of a committee member. Clin Toxicol (Phila). 2009;47:784–9.CrossRefGoogle Scholar
  3. 3.
    Davidson DG, Eastham WN. Acute liver necrosis following overdose of paracetamol. Br Med J. 1966;2:497–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernal W. Changing patterns of causation and the use of transplantation in the United States. Semin Liver Dis. 2003;23:227–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Gow PJ, Jones RM, Dobson JL, Angus PW. Etiology and outcome of fulminant hepatic failure managed at an Australian transplant unit. J Gastroenterol Hepatol. 2004;19:154–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005;42:1364–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Wei G, Berqquist A, Broomé U, Lindgren S, Wallerstedt S, Almer S, et al. Acute liver failure in Sweden: etiology and outcome. J Intern Med. 2007;262:393–401.PubMedCrossRefGoogle Scholar
  8. 8.
    Canbay A, Jochum C, Bechmann LP, Festag S, Gieseler RK, Yüksel Z, et al. Acute liver failure in a metropolitan area in Germany: a retrospective study (2002–2008). Z Gastroenterol. 2009;47:807–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Nourjah P, Ahmad SR, Karwoski C, Willy M. Estimates of acetaminophen (paracetamol)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf. 2006;15:398–405.PubMedCrossRefGoogle Scholar
  10. 10.
    Budnitz DS, Lovegrove MC, Crosby AE. Emergency department visits for overdoses of acetaminophen-containing products. Am J Prev Med. 2011;40:585–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Corcoran GB, Racz WJ, Smith CV, Mitchell JR. Effects of N-acetylcysteine on acetaminophen covalent binding and hepatic necrosis in mice. J Pharmacol Exp Ther. 1985;232:864–72.PubMedGoogle Scholar
  12. 12.
    Corcoran GB, Wong BK. Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo: studies with N-acetyl-D-cysteine in mice. J Pharmacol Exp Ther. 1986;238:54–61.PubMedGoogle Scholar
  13. 13.
    Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303:468–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology. 2010;51:246–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973;187:185–94.PubMedGoogle Scholar
  16. 16.
    Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973;187:195–202.PubMedGoogle Scholar
  17. 17.
    Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther. 1973;187:203–10.PubMedGoogle Scholar
  18. 18.
    Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973;187:211–7.PubMedGoogle Scholar
  19. 19.
    Placke ME, Ginsberg GL, Wyand DS, Cohen SD. Ultrastructural changes during acute acetaminophen-induced hepatotoxicity in the mouse: a time and dose study. Toxicol Pathol. 1987;15:431–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Meyers LL, Beierschmitt WP, Khairallah EA, Cohen SD. Acetaminophen-induced hepatic mitochondrial respiration in mice. Toxicol Appl Pharmacol. 1988;93:378–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 1990;255:935–41.PubMedGoogle Scholar
  22. 22.
    Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 2005;315:879–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Agarwal R, MacMillan-Crow LA, Rafferty TM, Saba H, Roberts DW, Fifer EK, et al. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J Pharmacol Exp Ther. 2011;337:110–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharma M, Gadang V, Jaeschke A. Critical role for mixed-linease kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol. 2012;82:1001–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A, et al. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology. 2008;135:1311–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131:165–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem. 2008;283:12565–3577.CrossRefGoogle Scholar
  28. 28.
    Win S, Than TA, Han D, Petrovic LM, Kaplowitz N. c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J Biol Chem. 2011;286:35071–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Saito C, Lemasters JJ, Jaeschke H. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2010;246:8–17.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 2012;44:88–106.PubMedCrossRefGoogle Scholar
  31. 31.
    Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40:1170–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Ramachandran A, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res. 2011;45:156–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-induced factor during acetaminophen-induced liver cell injury. Toxicol Sci. 2006;94:217–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 2008;324:8–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A, Lemasters JJ, et al. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci. 2011;122:598–605.PubMedCrossRefGoogle Scholar
  36. 36.
    Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67:322–8.PubMedCrossRefGoogle Scholar
  37. 37.
    McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53:974–82.PubMedCrossRefGoogle Scholar
  38. 38.
    McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122:1574–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Antoine DJ, Jenkins RE, Dear JW, Williams DP, McGill MR, Sharpe MR, et al. Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol. 2012;56:1070–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006;89:31–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Heading RC, Nimmo J, Prescott LF, Tothill P. The dependence of paracetamol absorption on the rate of gastric emptying. Br J Pharmacol. 1973;47:415–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Nimmo J, Heading RC, Tothill P, Prescott LF. Pharmacological modification of gastric emptying: effects of propantheline and metoclopromide on paracetamol absorption. Br Med J. 1973;1:587–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Nelson E, Morioka T. Kinetics of the metabolism of acetaminophen by humans. J Pharm Sci. 1963;52:864–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Cummings AJ, King ML, Martin BK. A kinetic study of drug elimination: the excretion of paracetamol and its metabolites in man. Br J Pharmacol Chemother. 1967;29:150–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Schiødt FV, Ott P, Christensen E, Bondesen S. The value of plasma acetaminophen half-life in antidote-treated acetaminophen overdosage. Clin Pharmacol Ther. 2002;71:221–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 2005;15:677–85.PubMedCrossRefGoogle Scholar
  47. 47.
    de Morais SM, Wells PG. Enhanced acetaminophen toxicity in rats with bilirubin glucuronyl transferase deficiency. Hepatology. 1989;10:163–7.PubMedCrossRefGoogle Scholar
  48. 48.
    de Morais SM, Uetrecht JP, Wells PG. Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert’s syndrome. Gastroenterology. 1992;102:577–86.PubMedGoogle Scholar
  49. 49.
    Monaghan G, Ryan M, Seddon R, Hume R, Burchell B. Genetic variation in bilirubin UDP-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet. 1996;347:578–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Clarke DJ, Moghrabi N, Monaghan G, Cassidy A, Boxer M, Hume R, et al. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin Chim Acta. 1997;266:63–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Court MH, Duan SX, von Moltke LL, Greenblatt DJ, Patten CJ, Miners JO, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther. 2001;299:998–1006.PubMedGoogle Scholar
  52. 52.
    Navarro SL, Chen Y, Li L, Li SS, Chang JL, Schwarz Y, et al. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metab Dispos. 2011;39:1650–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Ullrich D, Sieg A, Blume R, Bock KW, Schröter W, Bircher J. Normal pathways for glucuronidation, sulphation and oxidation of paracetamol in Gilbert’s syndrome. Eur J Clin Invest. 1987;17:237–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Rauchschwalbe SK, Zühlsdorf MT, Wensing G, Kuhlmann J. Glucuronidation of acetaminophen is independent of UGT1A1 promoter genotype. Int J Clin Pharmacol Ther. 2004;42:73–7.PubMedGoogle Scholar
  55. 55.
    Xu J, Kulkarni SR, Li L, Slitt AL. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis. Drug Metab Dispos. 2012;40:259–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Aubert J, Begriche K, Delannoy M, Morel I, Pajaud J, Ribault C, et al. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice. J Pharmacol Exp Ther. 2012;342:676–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Hardwick RN, Ferreira DW, More VR, Lake AD, Lu Z, Manautou JE, et al. Altered UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2012. doi: 10.1124/dmd.112.048439.
  58. 58.
    Lee S, Dawson PA, Hewavitharana AK, Shaw PN, Markovich D. Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology. 2006;43:1241–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Lindsay J, Wang LL, Li Y, Zhou SF. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr Drug Metab. 2008;9:99–105.PubMedCrossRefGoogle Scholar
  60. 60.
    Reiter C, Weinshilboum RM. Acetaminophen and phenol: substrates for both a thermostable and a thermolabile form of human platelet phenol sulfotransferase. J Pharmacol Exp Ther. 1982;221:43–51.PubMedGoogle Scholar
  61. 61.
    Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol. 2008;82:155–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Wen X, Donepudi AC, Thomas PE, Slitt AL, King RS, Aleksunes LM. Regulation of hepatic phase-II metabolism in pregnant mice. J Pharmacol Exp Ther. 2012 [Epud ahead of print].Google Scholar
  63. 63.
    Fischer LJ, Green MD, Harman AW. Studies on the fate of the glutathione and cysteine conjugates of acetaminophen in mice. Drug Metab Dispos. 1985;13:121–6.PubMedGoogle Scholar
  64. 64.
    Newton JF, Hoefle D, Gemborys MW, Mudge GH, Hook JB. Metabolism and excretion of a glutathione conjugate of acetaminophen in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1986;237:519–24.PubMedGoogle Scholar
  65. 65.
    Wong LT, Whitehouse LW, Solomonraj G, Paul CJ. Pathways of disposition of acetaminophen conjugates in the mouse. Toxicol Lett. 1981;9:145–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A. 1984;81:1327–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Davis M, Ideo G, Harrison NG, Williams R. Hepatic glutathione depletion and impaired bromosulphthalein clearance early after paracetamol overdose in man and the rat. Clin Sci Mol Med. 1975;49:495–502.PubMedGoogle Scholar
  68. 68.
    Lauterburg BH, Mitchell JR. Therapeutic doses of acetaminophen stimulate the turnover of cysteine and glutathione in man. J Hepatol. 1987;4:206–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Davern 2nd TJ, James LP, Hinson JA, Polson J, Larson AM, Fontana RJ, et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology. 2006;130:687–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Streeter AJ, Dahlin DC, Nelson SD, Baillie TA. The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Chem Biol Interact. 1984;48:349–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Lu Z, Bourdi M, Li JH, Aponte AM, Chen Y, Lombard DB, et al. SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO Rep. 2011;12:840–6.PubMedCrossRefGoogle Scholar
  72. 72.
    McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL. Potentiation of acetaminophen hepatotoxicity by alcohol. JAMA. 1980;244:251–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Sato C, Matsuda Y, Lieber CS. Increased hepatotoxicity of acetaminophen after chronic ethanol consumption in the rat. Gastroenterology. 1981;80:140–8.PubMedGoogle Scholar
  74. 74.
    Sato C, Lieber CS. Mechanism of the preventive effect of ethanol on acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther. 1981;218:811–5.PubMedGoogle Scholar
  75. 75.
    Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, et al. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther. 1993;54:142–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Nolan CM, Sandblom RE, Thummel KE, Slattery JT, Nelson SD. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest. 1994;105:408–11.PubMedCrossRefGoogle Scholar
  77. 77.
    Thummel KE, Slattery JT, Ro H, Chien JY, Nelson SD, Lown KE, et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther. 2000;67:591–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee SS, Buters JT, Pineau T, Fernandez-Salquero P, Gonzalez FJ. Role of Cyp2e1 in the hepatotoxicity of acetaminophen. J Biol Chem. 1996;271:12063–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43:817–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT. Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol. 1993;45:1563–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, et al. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol. 1993;6:511–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD. Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos. 2000;28:1397–400.PubMedGoogle Scholar
  83. 83.
    Tonge RP, Kelly EJ, Bruschi SA, Kalhorn T, Eaton DL, Nebert DW, et al. Role of CYP1A2 in the hepatotoxicity of acetaminophen: investigations using Cyp1a2 null mice. Toxicol Appl Pharmacol. 1998;153:102–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, et al. The CYP2E1-humanized transgenic mouse: role of CYP2E1 in acetaminophen hepatotoxicity. Drug Metab Dispos. 2005;33:449–57.PubMedCrossRefGoogle Scholar
  85. 85.
    Sarich T, Kalhorn T, Magee S, al-Sayegh F, Adams S, Slattery J, et al. The effect of omeprazole pretreatment on acetaminophen metabolism in rapid and slow metabolizers of S-mephenytoin. Clin Pharmacol Ther. 1997;62:21–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67:275–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Zaher H, Buters JT, Ward JM, Bruno MK, Lucas AM, Stern ST, et al. Protection against acetaminophen toxicity in Cyp1a2 and Cyp2e1 double-null mice. Toxicol Appl Pharmacol. 1998;152:193–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Anthérieu S, Chesné C, Li R, Camus S, Lahoz A, Picazo L, et al. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 2010;38:516–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT. Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol. 1993;45:1563–9.Google Scholar
  90. 90.
    Zhang J, Huang W, Chua SS, Wei P, Moore DD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science. 2002;298:422–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Guo GL, Moffit JS, Nicol CJ, Ward JM, Aleksunes LA, Slitt AL, et al. Enhanced acetaminophen toxicity by activation of the pregnane x receptor. Toxicol Sci. 2004;82:374–80.PubMedCrossRefGoogle Scholar
  92. 92.
    Wu Y, Zhang X, Bardag-Gorce F, Robel RC, Aquilo J, Chen L, et al. Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol. 2004;65:550–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos. 2009;37:1611–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Nelson SD, Slattery JT, Thummel KE, Watkins PB. CAR unlikely to significantly modulate acetaminophen hepatotoxicity in most humans. Hepatology. 2003;38:254–7.CrossRefGoogle Scholar
  95. 95.
    Manautou JE, Emeigh Hart SG, Khairallah EA, Cohen SD. Protection against acetaminophen hepatotoxicity by a single dose of clofibrate: effects on selective protein arylation and glutathione depletion. Fundam Appl Toxicol. 1996;29:229–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE. Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol Sci. 2000;57:338–44.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee FY, de Aquiar Vallim TQ, Chong HK, Zhang Y, Liu Y, et al. Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol. 2010;24:1626–36.PubMedCrossRefGoogle Scholar
  98. 98.
    Saini SP, Zhang B, Niu Y, Jiang M, Gao J, Zhai Y, et al. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology. 2011;54:2208–17.PubMedCrossRefGoogle Scholar
  99. 99.
    Martin-Murphy BV, Kominsky DJ, Orlicky DJ, Donohue Jr TM, Ju C. Increased susceptibility of natural killer t cell deficient mice to acetaminophen-induced liver injury. Hepatology. 2012. doi: 10.1002/hep.26134 [Epub ahead of print].
  100. 100.
    Down I, Aw TY, Liu J, Adegboyega P, Ajuebor MN. Vα14iNKT cell deficiency prevents acetaminophen-induced acute liver failure by enhancing hepatic glutathione and altering APAP metabolism. Biochem Biophys Res Commun. 2012;428:245–51.CrossRefGoogle Scholar
  101. 101.
    Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 2012;32:8–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Coles B, Wilson I, Wardman P, Hinson JA, Nelson SD, Ketterer B. The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinoneimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys. 1988;264:253–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A. 2000;97:12741–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ, et al. Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem. 2003;278:22243–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Arakawa S, Maejima T, Fujimoto K, Yamaguchi T, Yagi M, Sugiura T, et al. Resistance to acetaminophen-induced hepatotoxicity in glutathione S-transferase Mu 1-null mice. J Toxicol Sci. 2012;37:595–605.PubMedCrossRefGoogle Scholar
  106. 106.
    Lucena MI, Andrade RJ, Martínez C, Ulzurrun E, García-Martín E, Borraz Y, et al. Spanish group for the study of drug-induced liver disease. Glutathione S-transferase M1 and T1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology. 2008;48:588–95.PubMedCrossRefGoogle Scholar
  107. 107.
    Buchard A, Eefsen M, Semb S, Andersen SE, Morling N, Bendtsen F, et al. The role of glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients. Clin Toxicol (Phila). 2012;50:27–33.CrossRefGoogle Scholar
  108. 108.
    Rashed MS, Myers TG, Nelson SD. Hepatic protein arylation, glutathione depletion, and metabolite profiles of acetaminophen and a non-hepatotoxic regioisomer, 3′-hydroxyacetanilide, in the mouse. Drug Metab Dispos. 1990;18:765–70.PubMedGoogle Scholar
  109. 109.
    Salminen Jr WF, Voellmy R, Roberts SM. Differential heat shock protein induction by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Pharmacol Exp Ther. 1997;282:1533–40.PubMedGoogle Scholar
  110. 110.
    Heard KJ, Green JL, James LP, Judge BS, Zolot L, Rhyee S, et al. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose. BMC Gastroenterol. 2011;11:20.PubMedCrossRefGoogle Scholar
  111. 111.
    Jaeschke H, Williams CD, McGill MR. Herbal extracts as hepatoprotectants against acetaminophen hepatotoxicity (letter). World J Gastroenterol. 2010;16:2448–50.PubMedCrossRefGoogle Scholar
  112. 112.
    Jaeschke H, McGill MR, Williams CD, Ramachandran A. Current issues with acetaminophen hepatotoxicity—a clinically relevant model to test the efficacy of natural products. Life Sci. 2011;88:737–45.PubMedCrossRefGoogle Scholar
  113. 113.
    Jaeschke H, Williams CD, McGill MR. Caveats of using acetaminophen hepatotoxicity models for natural product testing (letter). Toxicol Lett. 2012;215:40–1.PubMedCrossRefGoogle Scholar
  114. 114.
    Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, et al. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol. 1997;143:1–12.PubMedCrossRefGoogle Scholar
  115. 115.
    Pumford NR, Halmes NC, Hinson JA. Covalent binding of xenobiotics to specific proteins in the liver. Drug Metab Rev. 1997;29:39–57.PubMedCrossRefGoogle Scholar
  116. 116.
    Pumford NR, Halmes NC, Martin BM, Cook RJ, Wagner C, Hinson JA. Covalent binding of acetaminophen to N-10-formyltetrahydrofolate dehydrogenase in mice. J Pharmacol Exp Ther. 1997;280:501–5.PubMedGoogle Scholar
  117. 117.
    Andringa KK, Bajt ML, Jaeschke H, Bailey SM. Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase. Toxicol Lett. 2008;177:188–97.PubMedCrossRefGoogle Scholar
  118. 118.
    Gupta S, Rogers LK, Taylor SK, Smith CV. Inhibition of carbamyl phosphate synthetase-I and glutamine synthetase by hepatotoxic doses of acetaminophen in mice. Toxicol Appl Pharmacol. 1997;146:317–27.PubMedCrossRefGoogle Scholar
  119. 119.
    Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Biol Chem. 1989;264:9814–9.PubMedGoogle Scholar
  120. 120.
    Pumford NR, Hinson JA, Benson RW, Roberts DW. Immunoblot analysis of protein containing 3-(Cystein-S-yl)acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice. Toxicol Appl Pharmacol. 1990;104:521–532.PubMedCrossRefGoogle Scholar
  121. 121.
    Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem. 1998;273:17940–53.PubMedCrossRefGoogle Scholar
  122. 122.
    Knockaert L, Descatoire V, Vadrot N, Fromenty B, Robin MA. Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen. Toxicol In Vitro. 2011;25:475–84.Google Scholar
  123. 123.
    Hadi M, Dragovic S, van Swelm R, Herpers B, van de Water B, Russel FG, et al. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver. Arch Toxicol. 2013;87:155–65.Google Scholar
  124. 124.
    McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol. 2012;264:387–94.PubMedCrossRefGoogle Scholar
  125. 125.
    Wu D, Cederbaum AI. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol Appl Pharmacol. 2005;207:70–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Lauterburg BH, Smith CV, Hughes H, Mitchell JR. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest. 1984;73:124–33.PubMedCrossRefGoogle Scholar
  127. 127.
    Smith CV, Jaeschke H. Effect of acetaminophen on hepatic content and biliary efflux of glutathione disulfide in mice. Chem Biol Interact. 1989;70:241–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Bajt ML, Knight TR, Lemasters JJ, Jaeschke H. Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol Sci. 2004;80:343–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Roberts DW, Pumford NR, Potter DW, Benson RW, Hinson JA. A sensitive immunochemical assay for acetaminophen-protein adducts. J Pharmacol Exp Ther. 1987;241:527–33.PubMedGoogle Scholar
  130. 130.
    Roberts DW, Bucci TJ, Benson RW, Warbitton AR, McRae TA, Pumford NR, et al. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am J Pathol. 1991;138:359–71.PubMedGoogle Scholar
  131. 131.
    James LP, Chiew A, Abdel-Rahman SM, Letzig L, Graudins A, Day P, et al. Acetaminophen protein adduct formation following low-dose acetaminophen exposure: comparison of immediate-release vs extended-release formulations. Eur J Clin Pharmacol. 2012; doi: 10.1007/s00228-012-1410-7.
  132. 132.
    Simpson KJ, Bates CM, Henderson NC, Wigmore SJ, Garden OJ, Lee A, et al. The utilization of liver transplantation in the management of acute liver failure: comparison between acetaminophen and non-acetaminophen etiologies. Liver Transpl. 2009;15:600–9.PubMedCrossRefGoogle Scholar
  133. 133.
    James LP, Letzig L, Simpson PM, Capparelli E, Roberts DW, Hinson JA, et al. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos. 2009;37:1779–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Xiong H, Turner KC, Ward ES, Jansen PL, Brouwer KL. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(−) rats. J Pharmacol Exp Ther. 2000;295:512–8.PubMedGoogle Scholar
  135. 135.
    Xiong H, Suzuki H, Sugiyama Y, Meier PJ, Pollack GM, Brouwer KL. Mechanisms of impaired biliary excretion of acetaminophen glucuronide after acute Phenobarbital treatment of Phenobarbital pretreatment. Drug Metab Dispos. 2002;3:962–9.CrossRefGoogle Scholar
  136. 136.
    Zamek-Gliszczynski MJ, Hoffmaster KA, Tian X, Zhao R, Polli JW, Humphreys JE, et al. Mutliple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos. 2005;33:1158–65.PubMedCrossRefGoogle Scholar
  137. 137.
    Zamek-Gliszczynski MJ, Nezasa K, Tian X, Kalvass JC, Patel NJ, Raub TJ, et al. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol. 2006;70:2127–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Lee JK, Abe K, Bridges AS, Patel NJ, Raub TJ, Pollack GM, et al. Sex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver. Drug Metab Dispos. 2009;37:1916–21.PubMedCrossRefGoogle Scholar
  139. 139.
    Zamek-Gliszczynski MJ, Nezasa K, Tian X, Bridges AS, Lee K, Belinsky MG, et al. Evaluation of the role of multidrug resistance-associated protein (Mrp) 3 and Mrp4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in Abcc3−/− and Abcc4−/− mice. J Pharmacol Exp Ther. 2006;319:1485–91.PubMedCrossRefGoogle Scholar
  140. 140.
    Manautou JE, de Waart DR, Kunne C, Zelcer N, Goedken M, Borst P, et al. Altered disposition of acetaminophen in mice with a disruption of the Mrp3 gene. Hepatology. 2005;42:1091–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31:798–804.PubMedCrossRefGoogle Scholar
  142. 142.
    Ghanem CI, Gómez PC, Arana MC, Perassolo M, Ruiz M, Villanueva SS, et al. Effect of acetaminophen on expression and activity of rat liver multidrug resistance-associated protein 2 and P-glycoprotein. Biochem Pharmacol. 2004;68:791–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Aleksunes LM, Slitt AM, Cherrington NJ, Thibodeau MS, Klaassen CD, Manautou JE. Differential expression of mouse hepatic transporter genes in response to acetaminophen and carbon tetrachloride. Toxicol Sci. 2005;83:44–52.PubMedCrossRefGoogle Scholar
  144. 144.
    Barnes SN, Aleksunes LM, Augustine L, Scheffer GL, Goedken MJ, Jakowski AB, et al. Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab Dispos. 2007;35:1963–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev. 2010;42:482–538.PubMedCrossRefGoogle Scholar
  146. 146.
    Aleksunes LM, Slitt AM, Maher JM, Augustine LM, Goedken MJ, Chan JY, et al. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol Appl Pharmacol. 2008;226:74–83.PubMedCrossRefGoogle Scholar
  147. 147.
    Campion SN, Johnson R, Aleksunes LM, Goedken MJ, van Rooijen N, Scheffer GL, et al. Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function. Am J Physiol Gastrointest Liver Physiol. 2008;295:G294–304.PubMedCrossRefGoogle Scholar
  148. 148.
    Wong LT, Whitehouse LW, Solomonraj G, Paul CJ. Effect of a concomitant single dose of ethanol on the hepatotoxicity and metabolism of acetaminophen in mice. Toxicology. 1980;17:297–309.PubMedCrossRefGoogle Scholar
  149. 149.
    Thummel KE, Slattery JT, Nelson SD, Lee CA, Pearson PG. Effect of ethanol on hepatotoxicity of acetaminophen in mice and on reactive metabolite formation by mouse and human liver microsomes. Toxicol Appl Pharmacol. 1989;100:391–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Banda PW, Quart BD. The effect of mild alcohol consumption on the metabolism of acetaminophen in man. Res Commun Chem Pathol Pharmacol. 1982;38:57–70.PubMedGoogle Scholar
  151. 151.
    Waring WS, Stephen AF, Malkowska AM, Robinson OD. Acute ethanol coingestion confers a lower risk of hepatotoxicity after deliberate acetaminophen overdose. Acad Emerg Med. 2008;15:54–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Schiødt FV, Lee WM, Bondesen S, Ott P, Christensen E. Influence of acute and chronic alcohol intake on the clinical course and outcome in acetaminophen overdose. Aliment Pharmacol Ther. 2002;16:707–15.PubMedCrossRefGoogle Scholar
  153. 153.
    Whitcomb DC, Block GD. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA. 1994;272:1845–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Prescott LF. Paracetamol, alcohol, and the liver. Br J Clin Pharmacol. 2000;49:291–301.PubMedCrossRefGoogle Scholar
  155. 155.
    Dart RC, Green JL, Kuffner EK, Heard K, Sproule B, Brands B. The effects of paracetamol (acetaminophen) on hepatic tests in patients who chronically abuse alcohol—a randomized study. Aliment Pharmacol Ther. 2010;32:478–86.PubMedCrossRefGoogle Scholar
  156. 156.
    Rumack B, Heard K, Green J, Albert D, Bucher-Bartelson B, Bodmer M, et al. Effect of therapeutic doses of acetaminophen (up to 4 g/day) on serum alanine aminotransferase levels in subjects consuming ethanol: systematic review and meta-analysis of randomized controlled trials. Pharmacotherapy. 2012;32:784–91.PubMedCrossRefGoogle Scholar
  157. 157.
    Mitchell MC, Schenker S, Speeg Jr KV. Selective inhibition of acetaminophen oxidation and toxicity by cimetidine and other histamine H2-receptor antagonists in vivo and in vitro in the rat and in man. J Clin Invest. 1984;73:383–91.PubMedCrossRefGoogle Scholar
  158. 158.
    Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol. doi: 10.1016/j.fct.2012.12.063.
  159. 159.
    Park Y, Smith RD, Combs AB, Kehrer JP. Prevention of acetaminophen-induced hepatotoxicity by dimethyl sulfoxide. Toxicology. 1988;52:165–75.PubMedCrossRefGoogle Scholar
  160. 160.
    Yoon MY, Kim SJ, Lee BH, Chung JH, Kim YC. Effects of dimethylsulfoxide on metabolism and toxicity of acetaminophen in mice. Biol Pharm Bull. 2006;29:1618–24.PubMedCrossRefGoogle Scholar
  161. 161.
    Jaeschke H, Cover C, Bajt ML. Role of caspases in acetaminophen-induced liver injury. Life Sci. 2006;78:1670–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Xie Y, Williams CD, McGill MR, Lebofsky M, Ramachandran A, Jaeschke H. Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting P450 isoenzymes not inflammasome activation. Toxicol Sci. 2013;131:325–35.PubMedCrossRefGoogle Scholar
  163. 163.
    James RC, Goodman DR, Harbison RD. Hepatic glutathione and hepatotoxicity: changes induced by selected narcotics. J Pharmacol Exp Ther. 1982;221:708–14.PubMedGoogle Scholar
  164. 164.
    Schmidt LE, Dalhoff K. The effect of regular medication on the outcome of paracetamol poisoning. Aliment Pharmacol Ther. 2002;16:1539–45.PubMedCrossRefGoogle Scholar
  165. 165.
    Gardner CR, Mishin V, Laskin JD, Laskin DL. Exacerbation of acetaminophen hepatotoxicity by the anthelmentic drug fenbendazole. Toxicol Sci. 2012;125:607–12.PubMedCrossRefGoogle Scholar
  166. 166.
    Férnandez-Checa JC, Hirano T, Tsukamoto H, Kaplowitz N. Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol. 1993;10:469–75.PubMedCrossRefGoogle Scholar
  167. 167.
    Mitchell MC, Hanew T, Meredith CG, Schenker S. Effects of oral contraceptive steroids on acetaminophen metabolism and elimination. Clin Pharmacol Ther. 1983;34:48–53.PubMedCrossRefGoogle Scholar
  168. 168.
    Liu Y, Ramírez J, Ratain MJ. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol. 2011;71:917–20.PubMedCrossRefGoogle Scholar
  169. 169.
    Green CE, Dabbs JE, Tyson CA. Metabolism and cytotoxicity of acetaminophen in hepatocytes isolated from resistant and susceptible species. Toxicol Appl Pharmacol. 1984;76:139–49.PubMedCrossRefGoogle Scholar
  170. 170.
    Harman AW, Fischer LJ. Hamster hepatocytes in culture as a model for acetaminophen toxicity studies with inhibitors of drug metabolism. Toxicol Appl Pharmacol. 1983;71:330–41.PubMedCrossRefGoogle Scholar
  171. 171.
    Bissell DM, Guzelian PS. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98.PubMedCrossRefGoogle Scholar
  172. 172.
    Beigel J, Fella K, Kramer PJ, Kroeger M, Hewitt P. Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol In Vitro. 2008;22:171–81.Google Scholar
  173. 173.
    Strom SC, Pisarov LA, Dorko K, Thompson MT, Schuetz JD, Schuetz EG. Use of human hepatocytes to study P450 gene induction. Methods Enzymol. 1996;272:388–401.PubMedCrossRefGoogle Scholar
  174. 174.
    Villa P, Arioli P, Guaitani A. Mechanism of maintenance of liver-specific functions by DMSO in cultured rat hepatocytes. Exp Cell Res. 1991;194:157–60.PubMedCrossRefGoogle Scholar
  175. 175.
    Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol. Dec. 2012. doi: 10.1007/s00204-012-0983-3.
  176. 176.
    Rodríguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002;32:505–20.PubMedCrossRefGoogle Scholar
  177. 177.
    Dai Y, Cederbaum AI. Cytotoxicity of acetaminophen in human cytochrome P4502E1-transfected HepG2 cells. J Pharmacol Exp Ther. 1995;273:1497–505.PubMedGoogle Scholar
  178. 178.
    Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99:15655–60.PubMedCrossRefGoogle Scholar
  179. 179.
    Parent R, Marion MJ, Furio L, Trépo C, Petit MA. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology. 2004;126:1147–56.PubMedCrossRefGoogle Scholar
  180. 180.
    Anthérieu S, Chesné C, Li R, Guguen-Guillouzo C, Guillouzo A. Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol In Vitro. 2012;26:1278–85.Google Scholar
  181. 181.
    Camp JP, Capitano AT. Induction of zone-like liver function gradients in HepG2 cells by varying culture medium height. Biotechnol Prog. 2007;23:1485–91.PubMedCrossRefGoogle Scholar
  182. 182.
    Legendre C, Hori T, Loyer P, Aninat C, Ischida S, Glaise D, et al. Drug-metabolising enzymes are down-regulated by hypoxia in differentitated human hepatoma HepaRG cells: HIF-1alpha involvement CYP3A4 repression. Eur J Cancer. 2009;45:2882–92.PubMedCrossRefGoogle Scholar
  183. 183.
    Yan HM, Ramachandran A, Bajt ML, Lemasters JJ, Jaeschke H. The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci. 2010;117:515–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pharmacology, Toxicology, and TherapeuticsUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations