Skip to main content

Advertisement

Log in

Role of Drug Efflux and Uptake Transporters in Atazanavir Intestinal Permeability and Drug-Drug Interactions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the role of membrane-associated drug transporters in regulating the intestinal absorption of the HIV-1 protease inhibitor, atazanavir, and assess the potential contribution of these transporters in clinical interactions of atazanavir with other protease inhibitors and tenofovir disoproxil fumarate (TDF).

Methods

Intestinal permeability of atazanavir was investigated in vitro, using the Caco-2 cell line system grown on Transwell inserts, and in situ, by single-pass perfusion of rat intestinal segments, jejunum and ileum, in the absence or presence of standard transporter inhibitors or antiretroviral drugs.

Results

Atazanavir accumulation by Caco-2 cells was susceptible to inhibition by P-glycoprotein and organic anion transporting polypeptide (OATP) family inhibitors and several antiretroviral drugs (protease inhibitors, TDF). The secretory flux of atazanavir (basolateral-to-apical Papp) was 11.7-fold higher than its absorptive flux. This efflux ratio was reduced to 1.5–1.7 in the presence of P-glycoprotein inhibitors or ritonavir. P-glycoprotein inhibition also resulted in 1.5–2.5-fold increase in atazanavir absorption in situ. Co-administration of TDF, however, reduced atazanavir intestinal permeability by 13–49%, similar to the effect observed clinically.

Conclusions

Drug transporters such as P-glycoprotein and OATPs regulate intestinal permeability of atazanavir and may contribute to its poor oral bioavailability and drug-drug interactions with other protease inhibitors and TDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ARV:

antiretroviral drug

BCRP:

breast cancer resistance protein

CYP:

cytochrome P450

GF120918:

elacridar

HIV:

human immunodeficiency virus

MDR:

multidrug resistance gene

MPP:

1-methyl-4-phenylpyridinium

MRP:

multidrug resistance-associated protein

NNRTI:

non-nucleoside reverse transcriptase inhibitor

NRTI:

nucleoside/nucleotide reverse transcriptase inhibitor

OAT:

organic anion transporter

OATP:

organic anion transporting polypeptide

OCT:

organic cation transporter

Pgp:

p-glycoprotein

PI:

HIV-1 protease inhibitor

PSC833:

valspodar

SLC:

solute carrier

TDF:

tenofovir disoproxil fumarate

REFERENCES

  1. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services; 2012 Mar 27.

  2. von Hentig N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today (Barc). 2008;44(2):103–32.

    Article  Google Scholar 

  3. Bristol Myers Squibb Company. Princeton, NJ, USA. Reyataz product information. 2012.

  4. Giguere P, Burry J, Beique L, Zhang G, Angel J, la Porte C. The effect of food on the pharmacokinetics of atazanavir/ritonavir 300/100 mg daily in HIV-infected patients. 11th International Workshop on Clinical Pharmacology and HIV Therapy. 2010 Apr 7. Report No. 30: Sorrento, Italy.

  5. Bruyere A, Decleves X, Bouzom F, Ball K, Marques C, Treton X, et al. Effect of Variations in the Amounts of P-Glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the Human Small Intestine on PBPK Models for Predicting Intestinal First Pass. Mol Pharm. 2010;7(5):1596–607.

    Article  PubMed  CAS  Google Scholar 

  6. Kis O, Robillard K, Chan GN, Bendayan R. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci. 2010;31(1):22–35.

    Article  PubMed  CAS  Google Scholar 

  7. Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci. 2004;21(1):25–51.

    Article  PubMed  CAS  Google Scholar 

  8. Wynn GH, Zapor MJ, Smith BH, Wortmann G, Oesterheld JR, Armstrong SC, et al. Antiretrovirals, part 1: overview, history, and focus on protease inhibitors. Psychosomatics. 2004;45(3):262–70.

    Article  PubMed  CAS  Google Scholar 

  9. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998;101(2):289–94.

    Article  PubMed  CAS  Google Scholar 

  10. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73(10):1573–81.

    Article  PubMed  CAS  Google Scholar 

  11. Perloff ES, Duan SX, Skolnik PR, Greenblatt DJ, von Moltke LL. Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos. 2005;33(6):764–70.

    Article  PubMed  CAS  Google Scholar 

  12. Perloff MD, Von Moltke LL, Fahey JM, Daily JP, Greenblatt DJ. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS. 2000;14(9):1287–9.

    Article  PubMed  CAS  Google Scholar 

  13. Weiss J, Weis N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol. 2008;579(1–3):104–9.

    Article  PubMed  CAS  Google Scholar 

  14. Holmstock NF, Annaert PP, Augustijns P. Boosting of HIV protease inhibitors by ritonavir in the intestine: the relative role of Cyp and P-gp inhibition based on Caco-2 monolayers versus in situ intestinal perfusion in mice. Drug Metab Dispos. 2012;40(8):1473–7.

    Google Scholar 

  15. Bierman WF, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, et al. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother. 2010;65(8):1672–80.

    Article  PubMed  CAS  Google Scholar 

  16. van der Sandt I, Vos CM, Nabulsi L, Blom-Roosemalen MC, Voorwinden HH, de Boer AG, et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood–brain barrier. AIDS. 2001;15(4):483–91.

    Article  PubMed  Google Scholar 

  17. Janneh O, Owen A, Chandler B, Hartkoorn RC, Hart CA, Bray PG, et al. Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS. 2005;19(18):2097–102.

    Article  PubMed  CAS  Google Scholar 

  18. Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.

    Article  PubMed  CAS  Google Scholar 

  19. Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos. 2007;35(3):340–4.

    Article  PubMed  CAS  Google Scholar 

  20. Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.

    Article  PubMed  CAS  Google Scholar 

  21. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310(1):334–41.

    Article  PubMed  CAS  Google Scholar 

  22. Kim RB. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest. 2003;33 Suppl 2:1–5.

    Article  PubMed  Google Scholar 

  23. Nakamura T, Yamamori M, Sakaeda T. Pharmacogenetics of intestinal absorption. Curr Drug Deliv. 2008;5(3):153–69.

    Article  PubMed  CAS  Google Scholar 

  24. Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40(3):163–76.

    Article  PubMed  CAS  Google Scholar 

  25. Demby VE, Harmon KA, Naqwel M, Humphreys JE, Wire M, Polli JW. OATP1B1, OATP1B3 and BCRP transporter characterization for fosamprenavir, amprenavir and lopinavir. 2008 AAPS Annual Meeting and Exposition. 2008;2355.

  26. Kis O, Zastre JA, Ramaswamy M, Bendayan R. pH dependence of organic anion-transporting polypeptide 2B1 in Caco-2 cells: potential role in antiretroviral drug oral bioavailability and drug-drug interactions. J Pharmacol Exp Ther. 2010;334(3):1009–22.

    Article  PubMed  CAS  Google Scholar 

  27. Janneh O, Anwar T, Jungbauer C, Kopp S, Khoo SH, Back DJ, et al. P-glycoprotein, multidrug resistance-associated proteins and human organic anion transporting polypeptide influence the intracellular accumulation of atazanavir. Antivir Ther. 2009;14(7):965–74.

    Article  PubMed  CAS  Google Scholar 

  28. Dailly E, Tribut O, Tattevin P, Arvieux C, Perre P, Raffi F, et al. Influence of tenofovir, nevirapine and efavirenz on ritonavir-boosted atazanavir pharmacokinetics in HIV-infected patients. Eur J Clin Pharmacol. 2006;62(7):523–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hu Y, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM. Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm. 2008;5(6):1122–30.

    Article  PubMed  CAS  Google Scholar 

  31. Jappar D, Wu SP, Hu Y, Smith DE. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice. Drug Metab Dispos. 2010;38(10):1740–6.

    Article  PubMed  CAS  Google Scholar 

  32. Adachi Y, Suzuki H, Sugiyama Y. Quantitative evaluation of the function of small intestinal P-glycoprotein: comparative studies between in situ and in vitro. Pharm Res. 2003;20(8):1163–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  34. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29(3–4):240–50.

    Article  PubMed  CAS  Google Scholar 

  35. MacLean C, Moenning U, Reichel A, Fricker G. Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos. 2008;36(7):1249–54.

    Article  PubMed  CAS  Google Scholar 

  36. Zastre JA, Chan GN, Ronaldson PT, Ramaswamy M, Couraud PO, Romero IA, et al. Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. J Neurosci Res. 2009;87(4):1023–36.

    Article  PubMed  CAS  Google Scholar 

  37. Bousquet L, Roucairol C, Hembury A, Nevers MC, Creminon C, Farinotti R, et al. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood–brain barrier. AIDS Res Hum Retrovir. 2008;24(9):1147–54.

    Article  PubMed  CAS  Google Scholar 

  38. Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoqvist F, Melhus H, et al. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther. 2001;299(1):164–70.

    PubMed  CAS  Google Scholar 

  39. Seithel A, Karlsson J, Hilgendorf C, Bjorquist A, Ungell AL. Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci. 2006;28(4):291–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35(5):383–96.

    Article  PubMed  CAS  Google Scholar 

  41. Balimane PV, Chong S. A combined cell based approach to identify P-glycoprotein substrates and inhibitors in a single assay. Int J Pharm. 2005;301(1–2):80–8.

    Article  PubMed  CAS  Google Scholar 

  42. Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Azarmi Y, Islambolchilar Z, Barzegar S, et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci. 2007;10(3):368–79.

    PubMed  CAS  Google Scholar 

  43. Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, et al. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012;55(10):4740–63.

    Article  PubMed  CAS  Google Scholar 

  44. Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;201:1–28.

    Article  PubMed  Google Scholar 

  45. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther. 2007;81(3):362–70.

    Article  PubMed  CAS  Google Scholar 

  46. Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, et al. Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos. 2007;35(4):590–4.

    Article  PubMed  CAS  Google Scholar 

  47. Sai Y, Kaneko Y, Ito S, Mitsuoka K, Kato Y, Tamai I, et al. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells. Drug Metab Dispos. 2006;34(8):1423–31.

    Article  PubMed  CAS  Google Scholar 

  48. Zapor MJ, Cozza KL, Wynn GH, Wortmann GW, Armstrong SC. Antiretrovirals, Part II: focus on non-protease inhibitor antiretrovirals (NRTIs, NNRTIs, and fusion inhibitors). Psychosomatics. 2004;45(6):524–35.

    Article  PubMed  CAS  Google Scholar 

  49. Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother. 2007;51(10):3498–504.

    Article  PubMed  CAS  Google Scholar 

  50. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet. 2004;43(9):595–612.

    Article  PubMed  CAS  Google Scholar 

  51. Nekvindova J, Masek V, Veinlichova A, Anzenbacherova E, Anzenbacher P, Zidek Z, et al. Inhibition of human liver microsomal cytochrome P450 activities by adefovir and tenofovir. Xenobiotica. 2006;36(12):1165–77.

    Article  PubMed  CAS  Google Scholar 

  52. Jayakanthan M, Chandrasekar S, Muthukumaran J, Mathur PP. Analysis of CYP3A4-HIV-1 protease drugs interactions by computational methods for highly active antiretroviral therapy in HIV/AIDS. J Mol Graph Model. 2010;28(5):455–63.

    Article  PubMed  CAS  Google Scholar 

  53. Wempe MF, Anderson PL. Atazanavir metabolism according to CYP3A5 status: an in vitro-in vivo assessment. Drug Metab Dispos. 2011;39(3):522–7.

    Article  PubMed  CAS  Google Scholar 

  54. Kile DA, Mawhinney S, Aquilante CL, Rower JE, Castillo-Mancilla JR, Anderson PL. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Res Hum Retroviruses. 2012;28(10):1227–34.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work is supported by the Canadian Foundation for AIDS Research [Grant 20023 awarded to RB]. Drs. Reina Bendayan and Sharon Walmsley are recipients of the Ontario HIV Treatment Network (OHTN) Career Scientist award. Ms. Olena Kis was supported by Ph.D. studentships from the OHTN, Ministry of Health of Ontario, and the National Science and Engineering Research Council of Canada (NSERC) and is currently a recipient of the Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best—Canada Graduate Scholarship. Dr. Jason Zastre was a postdoctoral fellow in the laboratory or Dr. Reina Bendayan when this study was initiated and is currently an Assistant Professor in the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia, Athens, Georgia.

We thank Dr. David E. Smith (Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy) for providing excellent guidance with the implementation of the rodent in situ single-pass perfusion technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Bendayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kis, O., Zastre, J.A., Hoque, M.T. et al. Role of Drug Efflux and Uptake Transporters in Atazanavir Intestinal Permeability and Drug-Drug Interactions. Pharm Res 30, 1050–1064 (2013). https://doi.org/10.1007/s11095-012-0942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0942-y

KEY WORDS

Navigation