Skip to main content
Log in

Oral Delivery of Ionic Complex of Ceftriaxone with Bile Acid Derivative in Non-human Primates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Since the absorption of ceftriaxone (CTO) in the intestine is restricted by its natural physiological characteristics, we developed a series of small synthetic compounds derived from bile acids to promote the absorption of CTO in the gastrointestinal tract.

Methods

Several bile acid derivatives were screened by measuring water solubility and partition coefficient of their complexes with CTO. The pharmacokinetic parameters of the selected CTO/HDCK ionic complex in monkeys were evaluated. The absorption pathway of CTO/HDCK complex was evaluated using Caco-2 cells and MDCK cells transfected with ASBT gene.

Results

HDCK enhanced the apparent membrane permeability of CTO 5.8-fold in the parallel artificial membrane permeability assay model. CTO/HDCK complex permeated Caco-2 cell via transcellular pathway, and interaction of the HDCK complex with ASBT was important to enhance uptake. When CTO/HDCK (equivalent to 50 mg/kg of ceftriaxone) formulated with lactose, poloxamer 407 and Labrasol was orally administered to monkeys, its maximum plasma concentration was 19.5 ± 1.8 μg/ml and oral bioavailability 28.5 ± 3.1%.

Conclusions

The CTO/HDCK formulation could enhance oral bioavailability of CTO in non-human primates. This oral formulation could be an alternative to injectable CTO with enhanced clinical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASBT:

apical sodium bile acid transporter

AUC:

area under the curve

Cmax :

the maximum plasma concentration

CTO:

sodium ceftriaxone

DAPI:

4,6-diamidino-2-phenylindole

DOCA:

deoxycholic acid

HDCK:

an oral drug carrier derived from deoxycholic acid

HPMCP:

hydroxypropyl methylcellulose phthalate

IVF:

in vitro fertilization

KRICT:

Korea Research Institute of Chemical Technology

MDCK:

Madin-Darby canine kidney

PAMPA:

parallel artificial membrane permeability assay

THF:

tetrahydrofuran

Tmax :

the time to reach the peak concentration

REFERENCES

  1. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50(12):2340–57.

    Article  PubMed  CAS  Google Scholar 

  2. Balakrishnan A, Polli JE. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm. 2006;3(3):223–30.

    Article  PubMed  CAS  Google Scholar 

  3. Mesiha MS, Ponnapula S, Plakogiannis F. Oral absorption of insulin encapsulated in artificial chyles of bile salts, palmitic acid and alpha-tocopherol dispersions. Int J Pharm. 2002;249(1–2):1–5.

    Article  PubMed  CAS  Google Scholar 

  4. Oreilly JR, Corrigan OI, Odriscoll CM. The effect of mixed micellar systems, bile-salt fatty-acids, on the solubility and intestinal-absorption of clofazimine (B663) in the anesthetized rat. Int J Pharm. 1994;109(2):147–54.

    Article  CAS  Google Scholar 

  5. Lillienau J, Schteingart CD, Hofmann AF. Physicochemical and physiological-properties of cholylsarcosine - a potential replacement detergent for bile-acid deficiency states in the small-intestine. J Clin Invest. 1992;89(2):420–31.

    Article  PubMed  CAS  Google Scholar 

  6. Michael S, Thole M, Dillmann R, Fahr A, Drewe J, Fricker G. Improvement of intestinal peptide absorption by a synthetic bile acid derivative, cholylsarcosine. Eur J Pharm Sci. 2000;10(2):133–40.

    Article  PubMed  CAS  Google Scholar 

  7. Tolle-Sander S, Lentz KA, Maeda DY, Coop A, Polli JE. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm. 2004;1(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kim SK, Lee S, Jin S, Moon HT, Jeon OC, Lee DY, et al. Diabetes correction in pancreatectomized canines by orally absorbable insulin-deoxycholate complex. Mol Pharm. 2010;7(3):708–17.

    Article  PubMed  CAS  Google Scholar 

  9. Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, N-alpha-deoxycholyl-L-lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia. 2005;48(3):405–11.

    Article  PubMed  CAS  Google Scholar 

  10. Lee Y, Nam JH, Shin HC, Byun Y. Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation. 2001;104(25):3116–20.

    Article  PubMed  CAS  Google Scholar 

  11. Kim SK, Lee DY, Lee E, Lee YK, Kim CY, Moon HT, et al. Absorption study of deoxycholic acid-heparin conjugate as a new form of oral anti-coagulant. J Controlled Release. 2007;120(1–2):4–10.

    Article  CAS  Google Scholar 

  12. Lee DY, Lee J, Lee S, Kim SK, Byun Y. Liphophilic complexation of heparin based on bile acid for oral delivery. J Controlled Release. 2007;123(1):39–45.

    Article  CAS  Google Scholar 

  13. Richards DM, Heel RC, Brogden RN, Speight TM, Avery GS. Ceftriaxone - a review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs. 1984;27(6):469–527.

    Article  PubMed  CAS  Google Scholar 

  14. Beam TR, Polk R, Barriere SL. Ceftriaxone - a beta-lactamase stable, broad-spectrum cephalosporin with an extended half-life. Pharmacotherapy. 1985;5(5):237–53.

    PubMed  CAS  Google Scholar 

  15. Balant L, Dayer P, Auckenthaler R. Clinical pharmacokinetics of the third generation cephalosporins. Clin Pharmacokinet. 1985;10(2):101–43.

    Article  PubMed  CAS  Google Scholar 

  16. Meyers BR, Srulevitch ES, Jacobson J, Hirschman SZ. Crossover study of the pharmacokinetics of ceftriaxone administered intravenously or intramuscularly to healthy-volunteers. Antimicrob Agents Ch. 1983;24(5):812–4.

    Article  CAS  Google Scholar 

  17. Hendrickson JR, North DS. Pharmacoeconomic benefit of antibiotic step-down therapy - converting patients from intravenous ceftriaxone to oral cefpodoxime proxetil. Ann Pharmacother. 1995;29(6):561–5.

    PubMed  CAS  Google Scholar 

  18. Harrington Z, Barnes DJ. One drug or two? Step-down therapy after i.v. antibiotics for community-acquired pneumonia. Intern Med J. 2007;37(11):767–71.

    Article  PubMed  CAS  Google Scholar 

  19. Jewesson P. Cost-effectiveness and value of an IV switch. PharmacoEconomics. 1994;5 Suppl 2:20–6.

    Article  PubMed  CAS  Google Scholar 

  20. Sevinc F, Prins JM, Koopmans RP, Langendijk PN, Bossuyt PM, Dankert J, et al. Early switch from intravenous to oral antibiotics: guidelines and implementation in a large teaching hospital. J Antimicrob Chemother. 1999;43(4):601–6.

    Article  PubMed  CAS  Google Scholar 

  21. Lee S, Kim SK, Lee DY, Chae SY, Byun Y. Pharmacokinetics of a new, orally available ceftriaxone formulation in physical complexation with a cationic analogue of bile acid in rats. Antimicrob Agents Ch. 2006;50(5):1869–71.

    Article  CAS  Google Scholar 

  22. Beskid G, Unowsky J, Behl CR, Siebelist J, Tossounian JL, Mcgarry CM, et al. Enteral, oral, and rectal absorption of ceftriaxone using glyceride enhancers. Chemotherapy. 1988;34(2):77–84.

    Article  PubMed  CAS  Google Scholar 

  23. Cho SW, Lee JS, Choi SH. Enhanced oral bioavailability of poorly absorbed drugs. I. Screening of absorption carrier for the ceftriaxone complex. J Pharm Sci. 2004;93(3):612–20.

    Article  PubMed  CAS  Google Scholar 

  24. Attama AA, Okafor CE, Builders PF, Okorie O. Formulation and in vitro evaluation of a PEGylated microscopic lipospheres delivery system for ceftriaxone sodium. Drug Deliv. 2009;16(8):448–57.

    Article  PubMed  CAS  Google Scholar 

  25. Lee S, Kim SK, Lee DY, Park K, Kumar TS, Chae SY, et al. Cationic analog of deoxycholate as an oral delivery carrier for ceftriaxone. J Pharm Sci. 2005;94(11):2541–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chen XX, Murawski A, Patel K, Crespi CL, Balimane PV. A novel design of artificial membrane for improving the PAMPA model. Pharm Res. 2008;25(7):1511–20.

    Article  PubMed  CAS  Google Scholar 

  27. Balakrishnan A, Sussman DJ, Polli JE. Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT). Pharm Res. 2005;22(8):1269–U13.

    Article  PubMed  CAS  Google Scholar 

  28. Charkoftaki G, Dokoumetzidis A, Valsami G, Macheras P. Elucidating the role of dose in the biopharmaceutics classification of drugs: the concepts of critical dose, effective in vivo solubility, and dose-dependent BCS. Pharm Res. 2012;29(11):3188–98.

    Google Scholar 

  29. Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Micr Infec Dis. 1995;22(1–2):89–96.

    Article  CAS  Google Scholar 

  30. Garot D, Respaud R, Lanotte P, Simon N, Mercier E, Ehrmann S, et al. Population pharmacokinetics of ceftriaxone in critically ill septic patients: a reappraisal. Brit J Clin Pharmaco. 2011;72(5):758–67.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Ok-Cheol Jeon and Seung Rim Hwang contributed equally to this work. This study was supported by the Converging Research Center Program (grant no. 2012K001398) and the World Class University (WCU) program (grant no. R31-2008-000-10103-0) of the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology in Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Hyung Park or Youngro Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, OC., Hwang, S.R., Al-Hilal, T.A. et al. Oral Delivery of Ionic Complex of Ceftriaxone with Bile Acid Derivative in Non-human Primates. Pharm Res 30, 959–967 (2013). https://doi.org/10.1007/s11095-012-0932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0932-0

KEY WORDS

Navigation