Pharmaceutical Research

, Volume 30, Issue 3, pp 866–877 | Cite as

Evaluation of Skin Permeation of β-Blockers for Topical Drug Delivery

Research Paper

ABSTRACT

Purpose

β-Blockers have recently become the main form of treatment of infantile hemangiomas. Due to the potential systemic adverse effects of β-blockers, topical skin treatment of the drugs is preferred. However, the effect and mechanism of dosage form pH upon skin permeation of these weak bases is not well understood. To develop an effective topical skin delivery system for the β-blockers, the present study evaluated skin permeation of β-blockers propranolol, betaxolol, timolol, and atenolol.

Methods

Experiments were performed in side-by-side diffusion cells with human epidermal membrane (HEM) in vitro to determine the effect of donor solution pH upon the permeation of the β-blockers across HEM.

Results

The apparent permeability coefficients of HEM for the β-blockers increased with their lipophilicity, suggesting the HEM lipoidal pathway as the main permeation mechanism of the β-blockers. The pH in the donor solution was a major factor influencing HEM permeation for the β-blockers with a 2- to 4-fold increase in the permeability coefficient per pH unit increase. This permeability versus pH relationship was found to deviate from theoretical predictions, possibly due to the effective stratum corneum pH being different from the pH in the donor solution.

Conclusions

The present results suggest the possibility of topical treatment of hemangioma using β-blockers.

KEY WORDS

hemangioma human skin topical transdermal β-blocker 

REFERENCES

  1. 1.
    Westfall TC, Westfall DP. β-adrenegic receptor antagonists. In: Brunton LL, editor. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill Medical; 2011. p. 310–33.Google Scholar
  2. 2.
    Johnsson G, Regàrdh CG. Clinical pharmacokinetics of β-adrenoreceptor blocking drugs. Clin Pharmacokinet. 1976;1:233–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Brooks AM, Gillies WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects. Drugs Aging. 1992;2:208–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Frishman WH, Fuksbrumer MS, Tannenbaum M. Topical ophthalmic beta-adrenergic blockade for the treatment of glaucoma and ocular hypertension. J Clin Pharmacol. 1994;34:795–803.PubMedGoogle Scholar
  5. 5.
    Haider KM, Plager DA, Neely DE, Eikenberry J, Haggstrom A. Outpatient treatment of periocular infantile hemangiomas with oral propranolol. J AAPOS. 2010;14:251–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Léauté-Labrèze C, Taïeb A. Efficacy of beta-blockers in infantile capillary haemangiomas: the physiological significance and therapeutic consequences. Ann Dermatol Venereol. 2008;135:860–2.CrossRefPubMedGoogle Scholar
  7. 7.
    Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taïeb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358:2649–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Truong MT, Chang KW, Berk DR, Heerema-McKenney A, Bruckner AL. Propranolol for the treatment of a life-threatening subglottic and mediastinal infantile hemangioma. J Pediatr. 2010;156:335–8.CrossRefPubMedGoogle Scholar
  9. 9.
    D’Angelo G, Lee H, Weiner RI. cAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. J Cell Biochem. 1997;67:353–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Storch C, Hoeger P. Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action. Br J Dermatol. 2010;163:269–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Sommers Smith SK, Smith DM. Beta blockade induces apoptosis in cultured capillary endothelial cells. In Vitro Cell Dev Biol Anim. 2002;38:298–304.CrossRefPubMedGoogle Scholar
  12. 12.
    Khunger N, Pahwa M. Dramatic response to topical timolol lotion of a large hemifacial infantile haemangioma associated with PHACE syndrome. Br J Dermatol. 2011;164:886–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Ni N, Langer P, Wagner R, Guo S. Topical timolol for periocular hemangioma: report of further study. Arch Ophthalmol. 2011;129:377–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Starkey A, Shahudulah H. Propranolol for infantile haemangiomas: a review. Arch Dis Child. 2011;96:890–3.CrossRefPubMedGoogle Scholar
  15. 15.
    Raphaël MF, de Graaf M, Breugem CC, Pasmans SGMA, Breur JMPJ. Atenolol: a promising alternative to propranolol for the treatment of hemangiomas. J Am Acad Dermatol. 2011;65:420–1.CrossRefPubMedGoogle Scholar
  16. 16.
    Guo S, Wagner R. Use of topical timolol for cosmetically significant facial hemangioma in children. J AAPOS. 2011;15:e20.Google Scholar
  17. 17.
    Oranje AP, Janmohamed SR, Madern GC, de Laat PC. Treatment of small superficial haemangioma with timolol 0.5% ophthalmic solution: a series of 20 cases. Dermatology. 2011;223:330–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Modamio P, Lastra CF, Mariño EL. A comparative in vitro study of percutaneous penetration of β-blockers in human skin. Int J Pharm. 2000;194:249–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Seidi S, Yamini Y, Rezazadeh M. Electrically enhanced microextraction for highly selective transport of three β-blocker drugs. J Pharm Biomed Anal. 2011;56:859–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Burgot G, Serrand P, Burgot JL. Thermodynamics of partitioning in the n-octanol/water system of some β-blockers. Int J Pharm. 1990;63:73–6.CrossRefGoogle Scholar
  21. 21.
    Hadgraft J, Valenta C. pH, pKa and dermal delivery. Int J Pharm. 2000;200:243–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Roy SD, Flynn GL. Transdermal delivery of narcotic analgesics: comparative permeabilities of narcotic analgesics through human cadaver skin. Pharm Res. 1989;6:825–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Roy SD, Flynn GL. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm Res. 1990;7:842–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Svozil M, Doležal P, Hrabálek A. In vitro studies on transdermal permeation of butorphanol. Drug Dev Ind Pharm. 2007;33:559–67.CrossRefPubMedGoogle Scholar
  25. 25.
    Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Chantasart D, Li SK. Relationship between the enhancement effects of chemical permeation enhancers on the lipoidal transport pathway across human skin under the symmetric and asymmetric conditions in vitro. Pharm Res. 2010;27:1825–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Peck KD, Ghanem AH, Higuchi WI, Srinivasan V. Improved stability of the human epidermal membrane during successive permeability experiments. Int J Pharm. 1993;98:141–7.CrossRefGoogle Scholar
  28. 28.
    Kasting GB, Bowman LA. DC electrical properties of frozen, excised human skin. Pharm Res. 1990;7:134–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Peck KD, Ghanem AH, Higuchi WI. The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J Pharm Sci. 1995;84:975–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Chantasart D, Sa-Nguandeekul P, Prakongpan S, Li SK, Higuchi WI. Comparison of the effects of chemical permeation enhancers on the lipoidal pathways of human epidermal membrane and hairless mouse skin and the mechanism of enhancer action. J Pharm Sci. 2007;96:2310–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Denet AR, Préat V. Transdermal delivery of timolol by electroporation through human skin. J Control Release. 2003;88:253–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Denet AR, Ucakar B, Préat V. Transdermal delivery of timolol and atenolol using electroporation and iontophoresis in combination: a mechanistic approach. Pharm Res. 2003;20:1946–51.CrossRefPubMedGoogle Scholar
  34. 34.
    Fatouros DG, Bouwstra JA. Iontophoretic enhancement of timolol across human dermatomed skin in vitro. J Drug Target. 2004;12:19–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Kanikkannan N, Singh J, Ramarao P. In vitro transdermal iontophoretic transport of timolol maleate: effect of age and species. J Control Release. 2001;71:99–105.CrossRefPubMedGoogle Scholar
  36. 36.
    Ghosh B, Reddy LH, Kulkarni RV, Khanam J. Comparison of skin permeability of drugs in mice and human cadaver skin. Indian J Exp Biol. 2000;38:42–5.PubMedGoogle Scholar
  37. 37.
    Aqil M, Sultana Y, Ali A. Transdermal delivery of beta-blockers. Expert Opin Drug Deliv. 2006;3:405–18.CrossRefPubMedGoogle Scholar
  38. 38.
    Li SK, Ghanem AH, Peck KD, Higuchi WI. Characterization of the transport pathways induced during low to moderate voltage iontophoresis in human epidermal membrane. J Pharm Sci. 1998;87:40–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Cabral DJ, Hamilton JA, Small DM. The ionization behavior of bile acids in different aqueous environments. J Lipid Res. 1986;27:334–43.PubMedGoogle Scholar
  40. 40.
    Ko J, Hamilton JA, Ton-Nu HT, Schteingart CD, Hofmann AF, Small DM. Effects of side chain length on ionization behavior and transbilayer transport of unconjugated dihydroxy bile acids: a comparison of nor-chenodeoxycholic acid and chenodeoxycholic acid. J Lipid Res. 1994;35:883–92.PubMedGoogle Scholar
  41. 41.
    Mehler EL, Fuxreiter M, Simon I, Garcia-Moreno EB. The role of hydrophobic microenvironments in modulating pKa shifts in proteins. Proteins Struct Funct Genet. 2002;48:283–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Ayer J, Maibach HI. Human skin buffering capacity against a reference base sodium hydroxide: in vitro model. Cutan Ocul Toxicol. 2008;27:271–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhai H, Chan HP, Farahmand S, Maibach HI. Measuring human skin buffering capacity: an in vitro model. Skin Res Technol. 2009;15:470–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Moehrle M, Léauté-Labrèze C, Schmidt V, Röcken M, Poets CF, Goelz R. Topical timolol for small hemangiomas of infancy. Pediatr Dermatol. 2012: Epub ahead of print.Google Scholar
  45. 45.
    Chakkittakandiyil A, Phillips R, Frieden IJ, et al. Timolol maleate 0.5% or 0.1% gel-forming solution for infantile hemangiomas: a retrospective, multicenter, cohort study. Pediatr Dermatol. 2012;29:28–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Kunzi-Rapp K. Topical propranolol therapy for infantile hemangiomas. Pediatr Dermatol. 2012;29:154–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Zimmermann AP, Wiegand S, Werner JA, Eivazi B. Propranolol therapy for infantile haemangiomas: review of the literature. Int J Pediatr Otorhinolaryngol. 2010;74:338–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Franz TJ, Lehman PA, Franz SF, et al. Percutaneous penetration of n-nitrosodiethanine through human skin (in vitro): comparison of finite and infinite dose application from cosmetic vehicles. Fundam Appl Toxicol. 1993;21:213–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Grégoire S, Ribaud C, Benech F, Meunier JR, Garrigues-Mazert A, Guy RH. Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations. Br J Dermatol. 2009;160:80–91.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Doungdaw Chantasart
    • 1
    • 2
  • Jinsong Hao
    • 1
  • S. Kevin Li
    • 1
  1. 1.Division of Pharmaceutical Sciences, College of PharmacyUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Pharmacy, Faculty of PharmacyMahidol UniversityBangkokThailand

Personalised recommendations