Skip to main content

Advertisement

Log in

Bioactivity and Bioavailability of Ginsenosides are Dependent on the Glycosidase Activities of the A/J Mouse Intestinal Microbiome Defined by Pyrosequencing

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the ability of bacteria in the intestinal microbiome to convert naturally occurring primary ginsenosides in red ginseng extract to active secondary ginsenosides.

Methods

Anti-proliferative ginsenoside activity was tested using mouse lung cancer LM1 cells. Permeabilities were evaluated in Caco-2 cell monolayers. Systemic exposure of secondary ginsenosides was determined in A/J mice. 16S rRNA gene pyrosequencing was used to determine membership and abundance of bacteria in intestinal microbiome.

Results

Secondary ginsenoside C-K exhibited higher anti-proliferative activity and permeability than primary ginsenosides. Significant amounts of secondary ginsenosides (F2 and C-K) were found in blood of A/J mice following oral administration of primary ginsenoside Rb1. Because mammalian cells did not hydrolyze ginsenoside, we determined the ability of bacteria to hydrolyze ginsenosides and found that Rb1 underwent stepwise hydrolysis to Rd, F2, and then C-K. Formation of F2 from Rd was the rate-limiting step in the biotransformation of Rb1 to C-K.

Conclusion

Conversion to F2 is the rate-limiting step in bioactivation of primary ginsenosides by A/J mouse intestinal microbiome, whose characterization reveals the presence of certain bacterial families capable of enabling the formation of F2 and C-K in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

16s rRNA:

16s ribosomal RNA

C-K:

ginsenoside compound K

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

Pa-b :

permeability from apical to basolateral side

UPLC:

ultra-performance liquid chromatography

References

  1. Ahmedin Jemal RS, Jiaquan X, Ward E. Cancer statistics. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Clarkand J, You M. Chemoprevention of lung cancer by tea. Mol Nutr Food Res. 2006;50:144–51.

    Article  Google Scholar 

  3. Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev. 2000;32:395–411.

    Article  PubMed  CAS  Google Scholar 

  4. Tanand XL, Spivack SD. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer. 2009;65:129–37.

    Article  Google Scholar 

  5. Johnson TE, Hermanson D, Wang L, Kassie F, Upadhyaya P, O’Sullivan MG, et al. Lung tumorigenesis suppressing effects of a commercial kava extract and its selected compounds in a/j mice. Am J Chin Med. 39:727–42.

  6. Yan Y, Wang Y, Tan Q, Hara Y, Yun TK, Lubet RA, et al. Efficacy of polyphenon E, red ginseng, and rapamycin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia. 2006;8:52–8.

    Article  PubMed  CAS  Google Scholar 

  7. Mukhtar H, Khan N, Afaq F. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008;10:475–510.

    Article  PubMed  Google Scholar 

  8. Miller YE, Keith RL, Karoor V, Mozer AB, Hudish TM, Le M. Chemoprevention of murine lung cancer by gefitinib in combination with prostacyclin synthase overexpression. Lung Cancer. 2010;70:37–42.

    Article  PubMed  Google Scholar 

  9. Ohashi K, Takigawa N, Osawa M, Ichihara E, Takeda H, Kubo T, et al. Chemopreventive effects of gefitinib on nonsmoking-related lung tumorigenesis in activating epidermal growth factor receptor transgenic mice. Cancer Res. 2009;69:7088–95.

    Article  PubMed  CAS  Google Scholar 

  10. Miller YE, Kelly K, Kittelson J, Franklin WA, Kennedy TC, Klein CE, et al. A randomized phase II chemoprevention trial of 13-CIS retinoic acid with or without alpha tocopherol or observation in subjects at high risk for lung cancer. Cancer Prev Res. 2009;2:440–9.

    Article  Google Scholar 

  11. Scott EN, Gescher AJ, Steward WP, Brown K. Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila). 2009;2:525–30.

    Article  CAS  Google Scholar 

  12. Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol. 2010;80:947–54.

    Article  PubMed  CAS  Google Scholar 

  13. Sun S, Qi LW, Du GJ, Mehendale SR, Wang CZ, Yuan CS. Red notoginseng higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food Chem. 2011;125:1299–305.

    Article  PubMed  CAS  Google Scholar 

  14. Yun TK, Yun YS, Han IW. Anticarcinogenic effect of long-term oral administration of red ginseng on newborn mice exposed to various chemical carcinogens. Cancer Detect Prev. 1983;6:515–25.

    PubMed  CAS  Google Scholar 

  15. Yun TK, Kim SH, Oh YR. Medium-term (9 weeks) method for assay of preventive agents against tumor. J Korean Cancer Assoc. 1987;19:1–7.

    Google Scholar 

  16. Yun TK, Kim SH. Inhibition of development of benzo(a)-pyrene-induced mouse pulmonary adenoma by natural products in medium-term bioassay system. J Korean Cancer Assoc. 1988;20:133–42.

    Google Scholar 

  17. Yun TK. Usefulness of medium-term bioassay determining formations of pulmonary adenoma in NIH(GP) mice for finding anticarcinogenic agents from natural products. J Toxicol Sci. 1991;16 Suppl 1:53–62.

    Article  PubMed  CAS  Google Scholar 

  18. Yun TK, Kim SH, Lee YS. Trial of a new medium-term model using benzo(a)pyrene induced lung tumor in newborn mice. Anticancer Res. 1995;15:839–45.

    PubMed  CAS  Google Scholar 

  19. Kong H, Wang M, Venema K, Maathuis A, van der Heijden R, van der Greef J, et al. Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr A. 2009;1216:2195–203.

    Article  PubMed  CAS  Google Scholar 

  20. Li H, Lee JH, Ha JM. Effective purification of ginsenosides from cultured wild ginseng roots, red ginseng, and white ginseng with macroporous resins. J Microbiol Biotechnol. 2008;18:1789–91.

    PubMed  CAS  Google Scholar 

  21. Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol. 2005;55:531–40.

    Article  PubMed  CAS  Google Scholar 

  22. Yun TK, Lee YS, Lee YH, Kim SI, Yun HY. Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J Korean Med Sci. 2001;16(Suppl):S6–18.

    PubMed  CAS  Google Scholar 

  23. Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol. 2010;87:9–19.

    Article  PubMed  CAS  Google Scholar 

  24. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280(Pt 2):309–16.

    PubMed  CAS  Google Scholar 

  25. Henrissatand B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993;293(Pt 3):781–8.

    Google Scholar 

  26. Henrissatand B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996;316(Pt 2):695–6.

    Google Scholar 

  27. Bhatia Y, Mishra S, Bisaria VS. Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002;22:375–407.

    Article  PubMed  CAS  Google Scholar 

  28. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol. 1998;50:1155–60.

    Article  PubMed  CAS  Google Scholar 

  29. Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull. 2005;28:2102–5.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol. 2007;17:1937–43.

    PubMed  CAS  Google Scholar 

  31. Chen G, Yang M, Song Y, Lu Z, Zhang J, Huang H, et al. Comparative analysis on microbial and rat metabolism of ginsenoside Rb1 by high-performance liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2008;22:779–85.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou P, Zhou W, Yan Q, Li JY, Zhang XC. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp 229. J Appl Microbiol. 2008;104:699–706.

    Article  PubMed  CAS  Google Scholar 

  33. Son JW, Kim HJ, Oh DK. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Biotechnol Lett. 2008;30:713–6.

    Article  PubMed  CAS  Google Scholar 

  34. Kim YS, Kim JJ, Cho KH, Jung WS, Moon SK, Park EK, et al. Biotransformation of ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J Microbiol Biotechnol. 2008;18:1109–14.

    PubMed  CAS  Google Scholar 

  35. Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 1997;63:436–40.

    Article  PubMed  CAS  Google Scholar 

  36. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull. 2002;25:743–7.

    Article  PubMed  CAS  Google Scholar 

  37. Relman DA, Dethlefsen L, Huse S, Sogin ML. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. Plos Biol. 2008;6:2383–400.

    Google Scholar 

  38. Castagnini C, Luceri C, Toti S, Bigagli E, Caderni G, Femia AP, et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Menard apples, rich in polyphenols. Br J Nutr. 2009;102:1620–8.

    Article  PubMed  CAS  Google Scholar 

  39. Bolam DN, Sonnenburg ED, Zheng HJ, Joglekar P, Higginbottom SK, Firbank SJ, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–56.

    Article  PubMed  Google Scholar 

  40. Yang Z, Gao S, Yin TJ, Kulkarni KH, Teng Y, You M, et al. Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC-MS/MS method. J Pharm Biomed Anal. 2010;51:1120–7.

    Article  PubMed  CAS  Google Scholar 

  41. Yang Z, Gao S, Wang J, Yin T, Teng Y, Wu B, et al. Enhancement of oral bioavailability of ginsenoside 20(s)-Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab Dispos. 2011;39:1866–72.

    Google Scholar 

  42. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    Article  PubMed  CAS  Google Scholar 

  43. Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, Riley DR, et al. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinforma. 2011;12.

  44. McDoniels-Silvers AL, Herzog CR, Tyson FL, Malkinson AM, You M. Inactivation of both Rb and p53 pathways in mouse lung epithelial cell lines. Exp Lung Res. 2001;27:297–318.

    Article  PubMed  CAS  Google Scholar 

  45. Hu M, Chen J, Zhu Y, Dantzig AH, Stratford Jr RE, Kuhfeld MT. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharm Res. 1994;11:1405–13.

    Article  PubMed  CAS  Google Scholar 

  46. Arturssonand P, Karlsson J. Correlation between oral-drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–5.

    Article  Google Scholar 

  47. Yang Z, Wang JR, Niu T, Gao S, Yin T, You M, et al. Inhibition of p-glycoprotein leads to improved oral bioavailability of compound k, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metab Dispos. 40:1538–44.

  48. Hou JG, Xue JJ, Sun MQ, Wang CY, Liu L, Zhang DL, et al. Highly selective microbial transformation of major ginsenoside Rb(1) to gypenoside LXXV by Esteya vermicola CNU120806. J Appl Microbiol. 2012;113:807–14.

    Google Scholar 

  49. McBainand AJ, Macfarlane GT. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol. 1998;47:407–16.

    Article  Google Scholar 

  50. Goossens D, Jonkers D, Russel M, Stobberingh E, Van Den Bogaard A, StockbrUgger R. The effect of Lactobacillus plantarum 299v on the bacterial composition and metabolic activity in faeces of healthy volunteers: a placebo-controlled study on the onset and duration of effects. Aliment Pharmacol Ther. 2003;18:495–505.

    Article  PubMed  CAS  Google Scholar 

  51. Marteau P, Pochart P, Flourie B, Pellier P, Santos L, Desjeux JF, et al. Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am J Clin Nutr. 1990;52:685–8.

    PubMed  CAS  Google Scholar 

  52. Chen G, Yang M, Lu Z, Zhang J, Huang H, Liang Y, et al. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J Nat Prod. 2007;70:1203–6.

    Article  PubMed  CAS  Google Scholar 

  53. Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, et al. Microbial transformation of ginsenoside Rb(1) by Acremonium strictum. Appl Microbiol Biotechnol. 2008;77:1345–50.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett. 2006;28:1121–7.

    Article  PubMed  CAS  Google Scholar 

  55. Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry. 2008;69:218–24.

    Article  PubMed  CAS  Google Scholar 

  56. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  PubMed  CAS  Google Scholar 

  57. Chiand H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett. 2005;27:765–71.

    Article  Google Scholar 

Download references

Acknowledgments and disclosures

This work was supported by a grant from the National Institutes of Health [AT-005522] to Ming Hu at University of Houston, Ming You at Medical College of Wisconsin and Zhi-hong Jiang at Hong Kong Baptist University.

Niu and Smith contributed equally to this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph F. Petrosino or Ming Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, T., Smith, D.L., Yang, Z. et al. Bioactivity and Bioavailability of Ginsenosides are Dependent on the Glycosidase Activities of the A/J Mouse Intestinal Microbiome Defined by Pyrosequencing. Pharm Res 30, 836–846 (2013). https://doi.org/10.1007/s11095-012-0925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0925-z

KEY WORDS

Navigation