Advertisement

Pharmaceutical Research

, Volume 30, Issue 2, pp 325–341 | Cite as

Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery

  • Nitesh K. Kunda
  • Satyanarayana Somavarapu
  • Stephen B. Gordon
  • Gillian A. Hutcheon
  • Imran Y. SaleemEmail author
Expert Review

Abstract

Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most ‘professional’ antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.

KEY WORDS

antigen presenting cells dendritic cells dry powder polymeric nanoparticles pulmonary delivery of vaccines 

Abbreviations

AMs

alveolar macrophages

APCs

antigen presenting cells

BAL

bronchoalveolar lavage

CLRs

C-type lectin receptors

DCs

dendritic cells

DPI

dry powder inhalations

FD

freeze-drying

HLA

human leukocyte antigen

ILs

interleukins

LN

lymph node

MHC

major histocompatibility complex

MN

mannan

NPs

nanoparticles

PCL

poly-ε-caprolactone

PEG

polyethylene glycol

PEI

polyethyleneimine

PLA

polylactide or poly-L-lactic acid

PLGA

poly lactic-co-glycolic-acid

PRRs

pattern recognition receptors

PVA

polyvinyl alcohol

SCF

supercritical fluid

SD

spray-drying

SFD

spray-freeze drying

TLRs

toll-like receptors

TMC

N-trimethyl chitosan

VLPs

virus-like particles

References

  1. 1.
    Brown LR. Commercial challenges of protein drug delivery. Expet Opin Drug Deliv. 2005;2:29–42.CrossRefGoogle Scholar
  2. 2.
    Sullivan VJ, Mikszta JA, Laurent P, Huang J, Ford B. Noninvasive delivery technologies: respiratory delivery of vaccines. Expet Opin Drug Deliv. 2006;3:87–95.CrossRefGoogle Scholar
  3. 3.
    Sou T, Meeusen EN, de Veer M, Morton DAV, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29:191–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21:1428–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossi S, Sandri G, Caramella C. Buccal delivery systems for peptides: recent advances. Am J Drug Deliv. 2005;3:215–25.CrossRefGoogle Scholar
  6. 6.
    Shojaei AH, Chang RK, Guo X, Burnside BA, Couch RA. Systemic drug delivery via the buccal mucosal route. Pharm Tech:70–81 (2001).Google Scholar
  7. 7.
    Kumria Rand GG. Emerging trends in insulin delivery: Buccal route. J Diabetol. 2011;2:1–9.CrossRefGoogle Scholar
  8. 8.
    Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153:106–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalluriand H, Banga A. Transdermal delivery of proteins. AAPS PharmSciTech. 2011;12:431–41.CrossRefGoogle Scholar
  11. 11.
    Carstens MG. Opportunities and challenges in vaccine delivery. Eur J Pharm Sci. 2009;36:605–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Maurice J, Davey S. State of the world’s vaccines and immunization. http://www.unicef.org/media/files/SOWVI_full_report_english_LR1.pdf (accessed 17/02/2012 2012).
  13. 13.
    W.H. Organization. World Health Statistics 2011 in WHO Statistical Information System (WHOSIS). http://www.who.int/whosis/whostat/2011/en/index.html (accessed 17/04 2012).
  14. 14.
    Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expet Opin Drug Deliv. 2011;8:547–63.CrossRefGoogle Scholar
  15. 15.
    Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med (2005).Google Scholar
  16. 16.
    Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:600–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Sanders M. Inhalation therapy: an historical review. Prim Care Respir J. 2007;16:71–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Mack GS. Pfizer dumps Exubera. Nat Biotech. 2007;25:1331–2.CrossRefGoogle Scholar
  19. 19.
    Onoue S, Hashimoto N, Yamada S. Dry powder inhalation systems for pulmonary delivery of therapeutic peptides and proteins. Expert Opin Ther Pat. 2008;18:429–42.CrossRefGoogle Scholar
  20. 20.
    de Swart RL, LiCalsi C, Quirk AV, van Amerongen G, Nodelman V, Alcock R, et al. Measles vaccination of macaques by dry powder inhalation. Vaccine. 2007;25:1183–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Fourie P, Germishuizen W, Wong Y-L, Edwards D. Spray drying TB vaccines for pulmonary administration. Expert Opin Biol Ther. 2008;8:857–63.PubMedCrossRefGoogle Scholar
  22. 22.
    LiCalsi C, Maniaci MJ, Christensen T, Phillips E, Ward GH, Witham C. A powder formulation of measles vaccine for aerosol delivery. Vaccine. 2001;19:2629–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Amorij JP, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25:8707–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral. Mucosal and Cytokine Responses to Hepatitis B Vaccine. Mol Pharm. 2010;8:405–15.CrossRefGoogle Scholar
  25. 25.
    Effros RM. Anatomy, development, and physiology of the lungs. GI Motility online. 1: (2006).Google Scholar
  26. 26.
    Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respir Physiol Neurobiol. 2008;163:128–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195–220.PubMedCrossRefGoogle Scholar
  28. 28.
    Gehr P. Annexe A. Anatomy and morphology of the respiratory tract. Ann ICRP. 1994;24:121–66.CrossRefGoogle Scholar
  29. 29.
    Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev. 2006;58:996–1008.PubMedCrossRefGoogle Scholar
  30. 30.
    Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. Systemic and Mucosal Immune Responses in Mice after Mucosal Immunization with Group B Streptococcus Type III Capsular Polysaccharide-Cholera Toxin B Subunit Conjugate Vaccine. Infect Immun. 2000;68:5749–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Ballester M, Nembrini C, Dhar N, de Titta A, de Piano C, Pasquier M, et al. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine. 2011;29:6959–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Muttil P, Pulliam B, Garcia-Contreras L, Fallon J, Wang C, Hickey A, et al. Pulmonary immunization of Guinea Pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J. 2010;12:699–707.PubMedCrossRefGoogle Scholar
  33. 33.
    Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev. 2005;57:411–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Vermaelen K, Pauwels R. Pulmonary Dendritic Cells. Am J Respir Crit Care Med. 2005;172:530–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Nobelprize.org. The Nobel Prize in Physiology or Medicine 2011. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/ (accessed 19 Apr 2012).
  37. 37.
    Lassila O, Vainio O, Matzinger P. Can B cells turn on virgin T cells? Nature. 1988;334:253–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y-J, et al. Immunobiology of Dendritic Cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRefGoogle Scholar
  39. 39.
    Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen Presentation and T Cell Stimulation by Dendritic Cells. Annu Rev Immunol. 2002;20:621–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Foged C, Sundblad A, Hovgaard L. Targeting Vaccines to Dendritic Cells. Pharm Res. 2002;19:229–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Lambrecht BN, Hammad H. Biology of Lung dendritic cells at the origin of asthma. Immunity. 2009;31:412–24.PubMedCrossRefGoogle Scholar
  42. 42.
    GeurtsvanKessel CH, Lambrecht BN. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 2008;1:442–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Lommatzsch M, Bratke K, Bier A, Julius P, Kuepper M, Luttmann W, et al. Airway dendritic cell phenotypes in inflammatory diseases of the human lung. Eur Respir J. 2007;30:878–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Ba-Omar T, Al-Riyami B. Microscopic study of human alveolar macrophages. Microsc Microanal. 2008;14:1518–9.Google Scholar
  45. 45.
    Kiama SG, Cochand L, Karlsson L, Nicod LP, Gehr P. Evaluation of phagocytic activity in human monocyte-derived dendritic cells. J Aerosol Med. 2001;14:289–99.PubMedCrossRefGoogle Scholar
  46. 46.
    von Garnier C, Nicod LP. Immunology taught by lung dendritic cells. Swiss Med Wkly. 2009;139:186–92.Google Scholar
  47. 47.
    Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol. 2005;32:177–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine. 2003;21:883–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Burgdorf S, Lukacs-Kornek V, Kurts C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol. 2006;176:6770–6.PubMedGoogle Scholar
  51. 51.
    Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RAD, et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci. 2010;107:4287–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, Locksley R, Huang X, Krummel MF. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. The Journal of Experimental Medicine (2012).Google Scholar
  53. 53.
    Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27:573–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials. 2012;33:4229–39.PubMedCrossRefGoogle Scholar
  57. 57.
    Caminschi I, Maraskovsky E, Heath WR. Targeting dendritic cells in vivo for cancer therapy. Frontiers in Immunology. 3: (2012).Google Scholar
  58. 58.
    Carrillo-Conde B, Song E-H, Chavez-Santoscoy A, Phanse Y, Ramer-Tait AE, Pohl NLB, et al. Mannose-functionalized “Pathogen-like” polyanhydride nanoparticles target c-type lectin receptors on dendritic cells. Mol Pharm. 2011;8:1877–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Geijtenbeek TBH, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9:465–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29:196–212.PubMedCrossRefGoogle Scholar
  62. 62.
    Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine. 2008;3:1–19.PubMedCrossRefGoogle Scholar
  63. 63.
    Smyth HDC, Smyth HH, Hickey AJ. Macro and Microstructure of the Airways for Drug Delivery in Controlled Pulmonary Drug Delivery, Springer, 2011.Google Scholar
  64. 64.
    Heffernan MJ, Kasturi SP, Yang SC, Pulendran B, Murthy N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)–poly(cytidylic acid). Biomaterials. 2009;30:910–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13:106–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.PubMedCrossRefGoogle Scholar
  67. 67.
    Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expet Opin Drug Deliv. 2008;5:629–39.CrossRefGoogle Scholar
  68. 68.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.PubMedCrossRefGoogle Scholar
  69. 69.
    Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer. 2011;10:3.PubMedCrossRefGoogle Scholar
  70. 70.
    Doria-Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods. 2003;31:207–16.PubMedCrossRefGoogle Scholar
  71. 71.
    Bivas-Benita M, van Meijgaarden KE, Franken KLMC, Junginger HE, Borchard G, Ottenhoff THM, et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004;22:1609–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Jain JRA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Fiore VF, Lofton MC, Roser-Page S, Yang SC, Roman J, Murthy N, et al. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials. 2010;31:810–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon J, Wang C, et al. Immunization of Guinea Pigs with Novel Hepatitis B Antigen as Nanoparticle Aggregate Powders Administered by the Pulmonary Route. AAPS J. 2010;12:330–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Heffernan MJ, Murthy N. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjug Chem. 2005;16:1340–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N. Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem. 2008;19:1164–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnol Biol Med. 2006;2:8–21.CrossRefGoogle Scholar
  79. 79.
    Singh J, Pandit S, Bramwell VW, Alpar HO. Diphtheria toxoid loaded poly-(ε-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods. 2006;38:96–105.PubMedCrossRefGoogle Scholar
  80. 80.
    Mahapatro A, Singh D. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.PubMedCrossRefGoogle Scholar
  81. 81.
    Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee JS, Hwang SJ, Lee DS, Kim SC, Kim DJ. Formation of Poly(ethylene glycol)-Poly(ε-caprolactone) Nanoparticles via Nanoprecipitation. Macromol Res. 2009;17:72–8.CrossRefGoogle Scholar
  83. 83.
    Ranjan AP, Zeglam K, Mukerjee A, Thamake S, Vishwanatha JK. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging. Nanotechnology. 2011;22:1–10.CrossRefGoogle Scholar
  84. 84.
    Allémann E, Gurny R, Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm. 1992;87:247–53.CrossRefGoogle Scholar
  85. 85.
    Muthu M. Nanoparticles based on PLGA and its co-polymer: An overview, 2009.Google Scholar
  86. 86.
    Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm. 2002;233:239–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Bivas-Benita M, Romeijn S, Junginger HE, Borchard G. PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm. 2004;58:1–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KLMC, Friggen AH, et al. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine. 2009;27:4010–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Pulliam B, Sung JC, Edwards DA. Design of nanoparticle-based dry powder pulmonary vaccines. Expet Opin Drug Deliv. 2007;4:651–63.CrossRefGoogle Scholar
  91. 91.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82:488–96.PubMedCrossRefGoogle Scholar
  93. 93.
    O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng. 2001;18:69–85.PubMedCrossRefGoogle Scholar
  94. 94.
    Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci. 2009;98:1278–316.PubMedCrossRefGoogle Scholar
  95. 95.
    Amorij J-P, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W. Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release.Google Scholar
  96. 96.
    Sekaly R-P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med. 2008;205:7–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Lewis DJM, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, et al. Transient facial nerve paralysis (Bell’s Palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4:e6999.PubMedCrossRefGoogle Scholar
  98. 98.
    Vajdy M. Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems. Expert Opin Biol Ther. 2011;11:1501–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Skountzou I, Quan F-S, Jacob J, Compans RW, Kang S-M. Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine. 2006;24:6110–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Nottenburg C. Types of adjuvants: In Introduction to Adjuvant Patent Landscape. http://www.patentlens.net/daisy/adjuvants/Background/Adjuvant_types.html (accessed 14th April 2012).
  101. 101.
    Wee JLK, Scheerlinck JPY, Snibson KJ, Edwards S, Pearse M, Quinn C, et al. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol. 2008;1:489–96.PubMedCrossRefGoogle Scholar
  102. 102.
    Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.PubMedCrossRefGoogle Scholar
  103. 103.
    LiCalsi C, Christensen T, Bennett JV, Phillips E, Witham C. Dry powder inhalation as a potential delivery method for vaccines. Vaccine. 1999;17:1796–803.PubMedCrossRefGoogle Scholar
  104. 104.
    Mansour HM, Rhee Y, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.PubMedCrossRefGoogle Scholar
  105. 105.
    Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.PubMedCrossRefGoogle Scholar
  106. 106.
    Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.PubMedCrossRefGoogle Scholar
  107. 107.
    Anhorn MG, Mahler H-C, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Hirsjärvi S, Peltonen L, Hirvonen J. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of Poly(lactic acid) nanoparticles. AAPS PharmSciTech. 2009;10:488–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharmaceut Sci Tech Today. 1998;1:394–8.CrossRefGoogle Scholar
  110. 110.
    Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expet Opin Drug Deliv. 2010;7:705–19.CrossRefGoogle Scholar
  111. 111.
    Heng D, Lee SH, Ng WK, Tan RB. The nano spray dryer B-90. Expet Opin Drug Deliv. 2011;8:965–72.CrossRefGoogle Scholar
  112. 112.
    Amorij JP, Huckriede A, Wilschut J, Frijlink H, Hinrichs W. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25:1256–73.PubMedCrossRefGoogle Scholar
  113. 113.
    Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58:1009–29.PubMedCrossRefGoogle Scholar
  114. 114.
    Al-fagih IM, Alanazi FK, Hutcheon GA, Saleem IY. Recent advances using supercritical fluid techniques for pulmonary administration of macromolecules via dry powder formulations. Drug Deliv Lett. 2011;1:128–34.Google Scholar
  115. 115.
    Okamoto H, Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev. 2008;60:433–46.PubMedCrossRefGoogle Scholar
  116. 116.
    Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev. 2008;60:299–327.PubMedCrossRefGoogle Scholar
  117. 117.
    Kenji M. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev. 2008;60:411–32.CrossRefGoogle Scholar
  118. 118.
    Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev. 2008;60:399–410.PubMedCrossRefGoogle Scholar
  119. 119.
    Amidi M, Pellikaan HC, Hirschberg H, de Boer AH, Crommelin DJA, Hennink WE, et al. Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. Vaccine. 2007;25:6818–29.PubMedCrossRefGoogle Scholar
  120. 120.
    W.H. Organization. Pneumonia. http://www.who.int/mediacentre/factsheets/fs331/en/index.html (accessed 17/04 2012).
  121. 121.
    Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target. 2011;19:281–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32:3094–105.PubMedCrossRefGoogle Scholar
  123. 123.
    Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. 2010;144:118–26.PubMedCrossRefGoogle Scholar
  124. 124.
    Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A. 2005;102:18264–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Kempf M, Mandal B, Jilek S, Thiele L, Vörös J, Textor M, et al. Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles. J Drug Target. 2003;11:11–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Sheng K-C, Kalkanidis M, Pouniotis DS, Esparon S, Tang CK, Apostolopoulos V, et al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur J Immunol. 2008;38:424–36.PubMedCrossRefGoogle Scholar
  127. 127.
    White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol. 2006;58:729–37.PubMedCrossRefGoogle Scholar
  128. 128.
    Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res. 2006;16:331–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Hao J, Kwissa M, Pulendran B, Murthy N. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. Int J Nanomedicine. 2006;1:97–103.PubMedCrossRefGoogle Scholar
  130. 130.
    Lu D, Hickey AJ. Liposomal dry powders as aerosols for pulmonary delivery of proteins. AAPS PharmSciTech. 2005;6:E641–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Barnier Quer C, Robson Marsden H, Romeijn S, Zope H, Kros A, Jiskoot W. Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polym Chem. 2011;2:1482–5.CrossRefGoogle Scholar
  132. 132.
    Matinkhoo S, Lynch KH, Dennis JJ, Finlay WH, Vehring R. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci. 2011;100:5197–205.PubMedCrossRefGoogle Scholar
  133. 133.
    Saluja V, Amorij JP, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33.PubMedCrossRefGoogle Scholar
  134. 134.
    Jin TH, Tsao E, Goudsmit J, Dheenadhayalan V, Sadoff J. Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). Vaccine. 2010;28:4369–75.PubMedCrossRefGoogle Scholar
  135. 135.
    Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J, et al. Immunization by a bacterial aerosol. Proc Natl Acad Sci. 2008;105:4656–60.PubMedCrossRefGoogle Scholar
  136. 136.
    Lu D, Garcia-Contreras L, Muttil P, Padilla D, Xu D, Liu J, et al. Pulmonary Immunization Using Antigen 85-B Polymeric Microparticles to Boost Tuberculosis Immunity. AAPS J. 2010;12:338–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nitesh K. Kunda
    • 1
  • Satyanarayana Somavarapu
    • 2
  • Stephen B. Gordon
    • 3
  • Gillian A. Hutcheon
    • 1
  • Imran Y. Saleem
    • 1
    Email author
  1. 1.Formulation and Drug Delivery Research School of Pharmacy and Biomolecular ScienceLiverpool John Moores UniversityLiverpoolUK
  2. 2.Department of Pharmaceutics, School of PharmacyUniversity College LondonLondonUK
  3. 3.Respiratory Infection GroupLiverpool School of Tropical MedicineLiverpoolUK

Personalised recommendations