Skip to main content
Log in

Insights into the Role of Polymer-Surfactant Complexes in Drug Solubilisation/Stabilisation During Drug Release from Solid Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the role of polymer-surfactant interactions in drug solubilisation/stabilisation during the dissolution of spray-dried solid dispersions and their potential impact on in vivo drug solubilisation and absorption.

Methods

Dissolution/precipitation tests were performed on spray-dried HPMC-Etravirine solid dispersions to demonstrate the impact of different surfactants on the in vitro performance of the solid dispersions. Interactions between HPMC and bio-relevant and model anionic surfactants (bile salts and SDS respectively) were further characterised using surface tension measurements, fluorescence spectroscopy, DLS and SANS.

Results

Fast and complete dissolution was observed in media containing anionic surfactants with no drug recrystallisation within 4 h. The CMCs of bile salts and SDS were dramatically reduced to lower CACs in the presence of HPMC and Etravirine. The maximum increases of the apparent solubility of Etravirine were with the presence of HPMC and SDS/bile salts. The SANS and DLS results indicated the formation of HPMC-SDS/bile salts complexes which encapsulated/solubilised the drug.

Conclusions

This study has demonstrated the impact HPMC-anionic surfactant interactions have during the dissolution of non-ionic hydrophilic polymer based solid dispersions and has highlighted the potential relevance of this to a fuller understanding of drug solubilisation/stabilisation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  PubMed  CAS  Google Scholar 

  2. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  PubMed  CAS  Google Scholar 

  3. Sheen PC, Khetarpal VK, Cariola CM, Rowlings CE. Formulation studies of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int J Pharm. 1995;118:221–7.

    Article  CAS  Google Scholar 

  4. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.

    Article  PubMed  CAS  Google Scholar 

  5. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002.

    Article  PubMed  CAS  Google Scholar 

  6. Qi S, Marchaud D, Craig DQM. An investigation into the mechanism of dissolution rate enhancement of poorly water-soluble drugs from spray chilled Gelucire 50/13 microspheres. J Pharm Sci. 2010;99(1):262–74.

    Article  PubMed  CAS  Google Scholar 

  7. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  PubMed  CAS  Google Scholar 

  8. Gao P, Rush RD, Pfund WP, Huang T, Bauer JM, Morozowich W, et al. Development of a supersaturable SEDDS (SSEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2395–407.

    Article  Google Scholar 

  9. Pellett MA, Castellano S, Hadgraft J, Davis AF. The penetration of supersaturated solutions of piroxicam across silicone membranes and human skin in vitro. J Control Rel. 1997;46:205–14.

    Article  CAS  Google Scholar 

  10. Iervolino M, Cappello B, Raghavan SL, Hadgraft J. Penetration enhancement of ibuprofen from supersaturated solutions through human skin. Int J Pharm. 2001;212:131–41.

    Article  PubMed  CAS  Google Scholar 

  11. Vardakou M, Mercuri A, Barker SA, Craig DQM, Faulks RM, Wickham MSJ. Achieving antral grinding forces in biorelevant in vitro models: comparing the USP Dissolution Apparatus II and the Dynamic Gastric Model with human in vivo data. AAPS PharmSciTech. 2011;12(2):620–6.

    Article  PubMed  Google Scholar 

  12. Mercuri A, Passalacqua A, Wickham MSJ, Faulks RM, Craig DQM, Barker SA. The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study. Pharm Res. 2011;28:1540–51.

    Article  PubMed  CAS  Google Scholar 

  13. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26.

    Article  PubMed  CAS  Google Scholar 

  14. Madenci D, Egelhaaf SU. Self-assembly in aqueous bile salt solutions. Curr Opinion Colloid Interface Sci. 2010;15:109–15.

    Article  CAS  Google Scholar 

  15. Cabane B, Duplessix R. Decoration of semidilute polymer solutions with surfactant micelles. J Phys (Paris). 1987;48:651–62.

    Article  CAS  Google Scholar 

  16. Bury R, Desmazieres B, Treiner C. Interactions between poly(vinylpyrrolidone) and ionic surfactants at various solid/water interfaces: a calorimetric investigation. Colloids Surf A. 1997;127:113–24.

    Article  CAS  Google Scholar 

  17. Löfroth JE, Johansson L, Norman AC, Wettström K. Interactions between surfactants and polymers. I: HPMC. Progr Colloid Polym Sci. 1991;84:73–7.

    Article  Google Scholar 

  18. Holmberg C, Nilsson S, Sundelöf LO. Thermodynamic properties of surfactant/polymer/water systems with respect to clustering adsorption and intermolecular interaction as a function of temperature and polymer concentration. Langmuir. 1997;13(6):1392–9.

    Article  CAS  Google Scholar 

  19. Nilsson S. Interactions between water-soluble cellulose derivatives and surfactants. 1. The HPMC/SDS/Water system. Macromolecules. 1995;28(23):7837–44.

    Article  CAS  Google Scholar 

  20. Nilsson S, Sundelöf LO, Porsch B. On the characterization principles of some technically important water soluble non-ionic cellulose derivatives. Carbohydrate Polymers. 1995;28:265–75.

    Article  CAS  Google Scholar 

  21. Persson B, Nilsson S, Sundelöf LO. On the characterization principles of some technically important water soluble non-ionic cellulose derivatives. Part II: Surface tension and interaction with a surfactant. Carbohydrate Polymers. 1996;29:119–27.

    Article  CAS  Google Scholar 

  22. Couderc S, Li Y, Bloor DM, Holzwarth JF, Wyn-Jones E. Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97) formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir. 2001;17:4818–24.

    Article  CAS  Google Scholar 

  23. Li Y, Ghoreishi SM, Warr J, Bloor DM, Holzwarth JF. Interactions between a nonionic copolymer containing different amounts of covalently bonded vinyl acrylic acid and surfactants: EMF and microcalorimetry studies. Langmuir. 1999;15:6326–32.

    Article  CAS  Google Scholar 

  24. Li Y, Bloor DM, Penfold J, Holzwarth JF, Wyn-Jones E. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12EO6: an electromotive force, microcalorimetry, and small-angle neutron scattering study. Langmuir. 2000;16:8677–84.

    Article  CAS  Google Scholar 

  25. Purcell IP, Lu JR, Thomas RK, Howe AM, Penfold J. Adsorption of sodium dodecyl sulfate at the surface of aqueous solutions of poly(vinylpyrrolidone) studied by neutron reflection. Langmuir. 1998;14:1637–45.

    Article  CAS  Google Scholar 

  26. Lu JR, Thomas RK, Penfold J. Surfactant layers at the air/water interface: structure and composition. Adv Colloid Interface Sci. 2000;84:143–304.

    Article  PubMed  CAS  Google Scholar 

  27. Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. Washington DC: American Pharmaceutical Assocaition (AphA) Publications; 2005. p. 272.

    Google Scholar 

  28. Voorspoels J. R165335-F060-100mg tablet-formulation development. Technical Report PD-TECH-R165335-F060, Johnson& Johnsom Pharmaceutical Research & Development. 27th Feb 2005.

  29. Weuts I, Dycke FV, Voorspoels J, Cort SD, Stokbroekx S, Leemans R, et al. Physicochemical properties of the amorphous drug, cast films and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci. 2011;100(1):260–74.

    Article  PubMed  CAS  Google Scholar 

  30. Dissolution test method, Johnson & Johnson Pharmaceutical Research & Development, internal report AD-TM-R165335-F060-TAB-DL-001172-v2.3, 08 Feb 2007

  31. Aguiar J, Carpena P, Molina-Bolivar JA, Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Coll Int Sci. 2003;258:116–22.

    Article  CAS  Google Scholar 

  32. Heenan RK, Penfold J, King SM. SANS at pulsed neutron sources: present and future prospects. J Appl Cryst. 1997;30:1140–7.

    Article  CAS  Google Scholar 

  33. Kline SR. Reduction and analysis of SANS and USANS data using Igor pro. J Appl Cryst. 2006;39(6):895–900.

    Article  CAS  Google Scholar 

  34. Umlong IM, Ismail K. Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf A. 2007;299:8–14.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to acknowledge STFC for provision of neutron beamtime and Drs Stephen King and Sarah Rogers for their technical support and the financial support from Pharmaceutical Research and Development, Johnson & Johnson, Belgium. The authors would also like to thank Prof. Duncan, Q.M. Craig, Jody Voorspoels, Marcus Brewster for their constructive discussion, and Dr Francesca Baldelli Bombelli from the University of East Anglia for her assistance on DLS data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Qi.

Electronis supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, S., Roser, S., Edler, K.J. et al. Insights into the Role of Polymer-Surfactant Complexes in Drug Solubilisation/Stabilisation During Drug Release from Solid Dispersions. Pharm Res 30, 290–302 (2013). https://doi.org/10.1007/s11095-012-0873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0873-7

KEY WORDS

Navigation