Skip to main content
Log in

The Role of Polysorbate 80 and HPβCD at the Air-Water Interface of IgG Solutions

Pharmaceutical Research Aims and scope Submit manuscript

Cite this article

Abstract

Purpose

To test the hypothesis of surface displacement as the underlying mechanism for IgG stabilization by polysorbates and HPβCD against surface-induced aggregation.

Methods

Adsorption/desorption-kinetics of IgG-polysorbate 80/-HPβCD were monitored. Maximum bubble pressure method was used for processes within seconds from surface formation. Profile analysis tensiometry was applied over long periods and to assess surface rheologic properties. Additionally, the kinetics of adsorption, desorption and surface displacement was followed by a double-capillary setup of the profile analysis tensiometer, allowing drop bulk exchange.

Results

Weak surface activity for HPβCD vs. much higher surface activity for polysorbate 80 was shown. Protein-displacement when exceeding a polysorbate 80 concentration close to the CMC and a lack of protein displacement for HPβCD was observed. The drop bulk exchange experiments show IgG displacement by polysorbate 80 independent of the adsorption order. In contrast, HPβCD coexists with IgG at the air-water interface when the surface layer is built from a mixed IgG-HPβCD-solution. Incorporation of HPβCD in a preformed IgG-surface-layer does not occur.

Conclusions

The results confirm surface displacement as the stabilization mechanism of polysorbate 80, but refute the frequently held opinion, that HPβCD stabilizes proteins against aggregation at the air-water interface in a manner comparable to non-ionic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CDs:

cyclodextrins

CMC:

critical micellar concentration

HPβCD:

hydroxypropyl-β-cyclodextrin

IgG:

immunoglobulin G

mAbs:

monoclonal antibodies

MBPM:

maximum bubble pressure method

Rh-GCSF:

recombinant human granulocyte colony-stimulating factor

References

  1. Charman SA, Mason KL, Charman WN. Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm Res. 1993;10(7):954–62.

    Article  PubMed  CAS  Google Scholar 

  2. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  PubMed  CAS  Google Scholar 

  3. Kerwin BA, Heller MC, Levin SH, Randolph TW. Effects of tween 80 and sucrose on acute short-term stability and long-term storage at −20°C of a recombinant hemoglobin. J Pharm Sci. 1998;87(9):1062–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kiese S, Papppenberger A, Friess W, Mahler H-C. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–66.

    Article  PubMed  CAS  Google Scholar 

  5. Krielgaard L, et al. Effect of tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1593–603.

    Article  Google Scholar 

  6. Serno T, Carpenter JF, Randolph TW, Winter G. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-beta-cyclodextrin. J Pharm Sci. 2009;99(3):1193–206.

    Article  Google Scholar 

  7. Tavornvipas S, Tajiri S, Hirayama F, Arima H, Uekama K. Effects of hydrophilic cyclodextrins on aggregation of recombinant human growth hormone. Pharm Res. 2004;21(12):2369–76.

    Article  PubMed  CAS  Google Scholar 

  8. Wang W, Wang YJ, Wang DQ. Dual effects of Tween 80 on protein stability. Int J Pharm. 2008;347(1–2):31–8.

    Article  PubMed  CAS  Google Scholar 

  9. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    Article  PubMed  CAS  Google Scholar 

  10. Bam NB, Randolph TW, Cleland JL. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res. 1995;12(1):2–11.

    Article  PubMed  CAS  Google Scholar 

  11. Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85(12):1325–30.

    Article  PubMed  CAS  Google Scholar 

  12. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J Pharm Sci. 2005;94(6):1368–81.

    Article  PubMed  CAS  Google Scholar 

  13. Joshi O, Chu L, McGuire J, Wang DQ. Adsorption and function of recombinant Factor VIII at the air–water interface in the presence of Tween 80. J Pharm Sci. 2009;98(9):3099–107.

    Article  PubMed  CAS  Google Scholar 

  14. Grigoriev DO, Derkatch S, Krägel J, Miller R. Relationship between structure and rheological properties of mixed BSA/Tween 80 adsorption layers at the air/water interface. Food Hydrocolloids. 2007;21(5–6):823–30.

    Article  CAS  Google Scholar 

  15. Martin-Moe S et al (2010) The structure of biological therapeutics. Formulation and process development strategies for manufacturing biopharmaceuticals. John Wiley & Sons, Inc., pp. 1–40.

  16. Mahler H-C, Müller R, Frie W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17.

    Article  PubMed  CAS  Google Scholar 

  17. Mahler H-C, Senner F, Maeder K, Mueller R. Surface activity of a monoclonal antibody. J Pharm Sci. 2009;98(12):4525–33.

    Article  PubMed  CAS  Google Scholar 

  18. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4(4):298–306.

    Article  PubMed  CAS  Google Scholar 

  19. Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev. 2011;63(13):1086–106.

    Article  PubMed  CAS  Google Scholar 

  20. Serno T (2010) Inhibition of therapeutic protein aggregation by cyclodextrins. Dissertation written in English. Ludwig-Maximilians-Universität, Munich, Germany

  21. Shao Z, Krishnamoorthy R, Mitra AK. Cyclodextrins as nasal absorption promoters of insulin: mechanistic evaluations. Pharm Res. 1992;9(9):1157–63.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshida A, Arima H, Uekama K, Pitha J. Pharmaceutical evaluation of hydroxyalkyl ethers of β-cyclodextrins. Int J Pharm. 1988;46(3):217–22.

    Article  CAS  Google Scholar 

  23. Grigoriev DO, Derkatch S, Kraegel J, Miller R. Relationship between structure and rheological properties of mixed BSA/Tween 80 adsorption layers at the air/water interface. Food Hydrocolloids. 2007;21(5–6):823–30.

    Article  CAS  Google Scholar 

  24. Kotsmár C, et al. Drop profile analysis tensiometry with drop bulk exchange to study the sequential and simultaneous adsorption of a mixed β-casein /C12DMPO system. Colloid Polym Sci. 2008;286(8):1071–7.

    Article  Google Scholar 

  25. Kotsmar C, et al. Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers. Adv Colloid Interface Sci. 2009;150(1):41–54.

    Article  PubMed  CAS  Google Scholar 

  26. Ferri JK, Gorevski N, Kotsmar C, Leser ME, Miller R. Desorption kinetics of surfactants at fluid interfaces by novel coaxial capillary pendant drop experiments. Colloids Surf A Physicochem Eng Asp. 2008;319(1–3):13–20.

    Article  CAS  Google Scholar 

  27. Javadi A, Ferri JK, Karapantsios TD, Miller R. Interface and bulk exchange: single drops experiments and CFD simulations. Colloids Surf A Physicochem Eng Asp. 2010;365(1–3):145–53.

    Article  CAS  Google Scholar 

  28. Zadymova N, Yampol’skaya G, Filatova L. Interaction of bovine serum albumin with nonionic surfactant Tween 80 in aqueous solutions: complexation and association. Colloid Journal. 2006;68(2):162–72.

    Article  CAS  Google Scholar 

  29. Taneri F, Güneri T, Za A, Kata M. Improvement in the physicochemical properties of ketoconazole through complexation with cyclodextrin derivatives. J Incl Phenom Macro Chem. 2002;44(1):257–60.

    Article  CAS  Google Scholar 

  30. Avranas A, Malasidou E, Mandrazidou I. Adsorption of cetyldimethylbenzylammonium chloride on octane emulsions droplets: the effect of the presence of Tween 80. J Colloid Interface Sci. 1998;207(2):363–70.

    Article  PubMed  CAS  Google Scholar 

  31. Vogler EA, Spencer KB, Montgomery DB, Lander LM, Brittain WJ. Design and operational characteristics of a robotic Wilhelmy balance. Langmuir. 1993;9(9):2470–7.

    Article  CAS  Google Scholar 

  32. Wang X, Brusseau ML. The solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environ Sci Technol. 1993;27(13):2821–5.

    Article  CAS  Google Scholar 

  33. Alahverdjieva VS, et al. Adsorption behaviour of hen egg-white lysozyme at the air/water interface. Colloids Surf A Physicochem Eng Asp. 2008;323(1–3):167–74.

    Article  CAS  Google Scholar 

  34. Yang L, Biswas ME, Chen P. Study of binding between protein A and immunoglobulin G using a surface tension probe. Biophys J. 2003;84(1):509–22.

    Article  PubMed  CAS  Google Scholar 

  35. Mackie AR, Gunning AP, Ridout MJ, Wilde PJ, Morris VJ. Orogenic displacement in mixed β-Lactoglobulin/β-Casein films at the air/water interface. Langmuir. 2001;17(21):6593–8.

    Article  CAS  Google Scholar 

  36. Bam NB, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.

    Article  PubMed  CAS  Google Scholar 

  37. Carpenter JF, Kendrick BS, Chang BS, Manning MC, Randolph TW. Inhibition of stress-induced aggregation of protein therapeutics. Methods in Enzymology. Wetzel R, editors. Academic Press, Volume 309, 1999, pp 236–255.

  38. Fainerman VB, Kazakov VN, Lylyk SV, Makievski AV, Miller R. Dynamic surface tension measurements of surfactant solutions using the maximum bubble pressure method—limits of applicability. Colloids Surf A Physicochem Eng Asp. 2004;250(1–3):97–102.

    Article  CAS  Google Scholar 

  39. Fainerman VB, Miller R. Maximum bubble pressure tensiometry—an analysis of experimental constraints. Adv Colloid Interface Sci. 2004;108–109:287–301.

    Article  PubMed  Google Scholar 

  40. Frese C, et al. Adsorption kinetics of surfactant mixtures from micellar solutions as studied by maximum bubble pressure technique. J Colloid Interface Sci. 2003;267(2):475–82.

    Article  PubMed  CAS  Google Scholar 

  41. Miller R, Fainerman VB, Aksenenko EV, Leser ME, Michel M. Dynamic surface tension and adsorption kinetics of β-Casein at the solution/air interface. Langmuir. 2004;20(3):771–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mishchuk NA, Fainerman VB, Kovalchuk VI, Miller R, Dukhin SS. Studies of concentrated surfactant solutions using the maximum bubble pressure method. Colloids Surf A Physicochem Eng Asp. 2000;175(1–2):207–16.

    Article  CAS  Google Scholar 

  43. Niven RW, Prestrelski SJ, Treuheit MJ, Ip AY, Arakawa T. Protein nebulization II. Stabilization of G-CSF to air-jet nebulization and the role of protectants. Int J Pharmaceut. 1996;127(2):191–201.

    Article  CAS  Google Scholar 

  44. Zholob SA, Makievski AV, Miller R, Fainerman VB. Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry. Adv Colloid Interface Sci. 2007;134–135:322–9.

    Article  PubMed  Google Scholar 

  45. Fainerman VB, et al. Reversibility and irreversibility of adsorption of surfactants and proteins at liquid interfaces. Adv Colloid Interface Sci. 2006;123–126:163–71.

    Article  PubMed  Google Scholar 

  46. Kotsmar C, et al. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface. Langmuir. 2008;24(24):13977–84.

    Article  PubMed  CAS  Google Scholar 

  47. Gunning PA, et al. The effect of surfactant type on protein displacement from the air-water interface. Food Hydrocolloids. 2004;18(3):509–15.

    Article  CAS  Google Scholar 

  48. Ganzevles RA, Zinoviadou K, van Vliet T, Cohen Stuart MA, de Jongh HHJ. Modulating surface rheology by electrostatic protein/polysaccharide interactions. Langmuir. 2006;22(24):10089–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors thank the German National Academic Foundation (Studienstiftung des Deutschen Volkes) for financial support. Thanks are also expressed to Roche Diagnostics GmbH for material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Serno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Serno, T., Härtl, E., Besheer, A. et al. The Role of Polysorbate 80 and HPβCD at the Air-Water Interface of IgG Solutions. Pharm Res 30, 117–130 (2013). https://doi.org/10.1007/s11095-012-0854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0854-x

KEY WORDS

Navigation