Advertisement

Pharmaceutical Research

, Volume 29, Issue 11, pp 3007–3021 | Cite as

Modeling the Yew Tree Tubulin and a Comparison of its Interaction with Paclitaxel to Human Tubulin

  • Jack A. TuszynskiEmail author
  • Travis J. A. Craddock
  • Jonathan Y. Mane
  • Khaled Barakat
  • Chih-Yuan Tseng
  • Melissa Gajewski
  • Philip Winter
  • Laleh Alisaraie
  • Jordan Patterson
  • Eric Carpenter
  • Weiwei Wang
  • Michael K. Deyholos
  • Linji Li
  • Xiao Sun
  • Yong Zhang
  • Gane Ka-Shu Wong
Research Paper

ABSTRACT

Purpose

To explore possible ways in which yew tree tubulin is naturally resistant to paclitaxel. While the yew produces a potent cytotoxin, paclitaxel, it is immune to paclitaxel’s cytotoxic action.

Methods

Tubulin sequence data for plant species were obtained from Alberta 1000 Plants Initiative. Sequences were assembled with Trinity de novo assembly program and tubulin identified. Homology modeling using MODELLER software was done to generate structures for yew tubulin. Molecular dynamics simulations and molecular mechanics Poisson–Boltzmann calculations were performed with the Amber package to determine binding affinity of paclitaxel to yew tubulin. ClustalW2 program and PHYLIP package were used to perform phylogenetic analysis on plant tubulin sequences.

Results

We specifically analyzed several important regions in tubulin structure: the high-affinity paclitaxel binding site, as well as the intermediate binding site and microtubule nanopores. Our analysis indicates that the high-affinity binding site contains several substitutions compared to human tubulin, all of which reduce the binding energy of paclitaxel.

Conclusions

The yew has achieved a significant reduction of paclitaxel’s affinity for its tubulin by utilizing several specific residue changes in the binding pocket for paclitaxel.

KEY WORDS

chemotherapy nanopores paclitaxel tubulin yew tree 

ABBREVIATIONS

1KP

1000 plants initiative

BLAST

basic local alignment search tool

MD

molecular dynamics

MM-PBSA

molecular mechanics Poisson–Boltzmann surface area

MT

microtubule

NDGA

nordihydroguaiaretic acid

ORF

open reading frames

PDB

protein data bank

PTX

paclitaxel

RMSD

root mean square deviation

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

J.A.T. acknowledges support for this research from the Alberta Cancer Foundation, Alberta Advanced Education and Technology, the Allard Foundation, the Canadian Breast Cancer Foundation, and the National Sciences and Engineering Research Council of Canada (NSERC Canada). T.J.A.C. acknowledges funding support for this research from NSERC Canada. G.K.S.W. acknowledges Alberta Advanced Education and Technology, Genome Alberta, Alberta Innovates Tech Futures iCORE, Musea Ventures, and BGI-Shenzhen for the funding of the Alberta 1000 Plants Initiative.

REFERENCES

  1. 1.
    Cragg GML, Kingston DGI, Newman DJ. Anticancer agents from natural products. 2nd ed. Boca Raton: CRC; 2011.CrossRefGoogle Scholar
  2. 2.
    The Alberta 1000 Plants Initiative (Alberta Advanced Education and Technology, Musea Ventures, BGI-Shenzhen, Alberta iCORE, to Wong GKS). Available from: http://www.onekp.com/.
  3. 3.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93(9):2325–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980;77(3):1561–5.PubMedCrossRefGoogle Scholar
  5. 5.
    VanBuren V, Odde DJ, Cassimeris L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc Natl Acad Sci U S A. 2002;99(9):6035–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, et al. Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A. 2006;103(27):10166–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Löwe J, Li H, Downing KH, Nogales E. Refined Structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol. 2001;313(5):1045–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391(6663):199–203.PubMedCrossRefGoogle Scholar
  9. 9.
    Huzil JT, Ludueña RF, Tuszynski J. Comparative modelling of human β tubulin isotypes and implications for drug binding. Nanotechology. 2006;17(4):S90–S100.CrossRefGoogle Scholar
  10. 10.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.PubMedGoogle Scholar
  12. 12.
    Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012;40:D48–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–7.PubMedCrossRefGoogle Scholar
  14. 14.
    The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012;40:D71–5.CrossRefGoogle Scholar
  15. 15.
    Ludueña RF, Banerjee A. The isotypes of tubulin. In: Fojo T, editor. The role of microtubules in cell biology, neurobiology, and oncology. Totowa: Humana; 2008. p. 123–75.CrossRefGoogle Scholar
  16. 16.
    Bernstein FC, Koetzle TF, Williams GJ, Meyer Jr EE, Brice MD, Rodgers JR, et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112(3):535–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 9. San Francisco: University of California; 2006.Google Scholar
  18. 18.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65(3):712–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.PubMedCrossRefGoogle Scholar
  20. 20.
    Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, et al. NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys. 1999;151(1):283–312.CrossRefGoogle Scholar
  21. 21.
    Freedman H, Huzil JT, Luchko T, Ludueña RF, Tuszynski JA. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model. 2009;49(2):424–36.PubMedCrossRefGoogle Scholar
  22. 22.
    DeLano W. PyMOL Release 0.99. Palo Alto: DeLano Scientific LLC; 2002.Google Scholar
  23. 23.
    Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 A resolution. Strucr. 2002;10:1317–28.CrossRefGoogle Scholar
  24. 24.
    Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.PubMedCrossRefGoogle Scholar
  25. 25.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26(2):283–91.CrossRefGoogle Scholar
  26. 26.
    Sept D, Baker NA, McCammon JA. The physical basis of microtubule structure and stability. Protein Sci. 2003;12(10):2257–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35:W522–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:W665–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 10. San Francisco: University of California; 2008.Google Scholar
  32. 32.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98(18):10037–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, et al. ClustalW and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–82.PubMedGoogle Scholar
  35. 35.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMedGoogle Scholar
  36. 36.
    Felsenstein J. PHYLIP—phylogeny inference package (version 3.2). Cladistics. 1989;5:164–6.Google Scholar
  37. 37.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura M, Nakazawa J, Usui T, Osada H, Kono Y, Takatsuki A. Nordihydroguaiaretic acid, of a new family of microtubule-stabilizing agents, shows effects differentiated from paclitaxel. Biosci Biotechnol Biochem. 2003;67(1):151–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Díaz JF, Valpuesta JM, Chacón P, Diakun G, Andreu JM. Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. Internal microtubule dynamics. J Biol Chem. 1998;273(50):33803–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Ross JL, Fygenson DK. Mobility of taxol in microtubule bundles. Biophys J. 2003;84(6):3959–67.PubMedCrossRefGoogle Scholar
  42. 42.
    Buey RM, Calvo E, Barasoain I, Pineda O, Edler MC, Matesanz R, et al. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol. 2007;3(2):117–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Díaz JF, Barasoain I, Souto AA, Amat-Guerri F, Andreu JM. Macromolecular accessibility of fluorescent taxoids bound at a paclitaxel binding site in the microtubule surface. J Biol Chem. 2005;280(5):3928–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Díaz JF, Barasoain I, Andreu JM. Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J Biol Chem. 2003;278(10):8407–19.PubMedCrossRefGoogle Scholar
  45. 45.
    Mitra A, Sept D. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys J. 2008;95(7):3252–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, et al. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther. 2006;5(2):270–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol. 2003;10(7):597–607.PubMedCrossRefGoogle Scholar
  48. 48.
    Ludueña RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1998;178:207–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jack A. Tuszynski
    • 1
    • 2
    • 7
    Email author
  • Travis J. A. Craddock
    • 2
    • 3
  • Jonathan Y. Mane
    • 1
  • Khaled Barakat
    • 2
    • 4
  • Chih-Yuan Tseng
    • 1
  • Melissa Gajewski
    • 1
  • Philip Winter
    • 1
  • Laleh Alisaraie
    • 1
  • Jordan Patterson
    • 3
  • Eric Carpenter
    • 5
  • Weiwei Wang
    • 3
  • Michael K. Deyholos
    • 5
  • Linji Li
    • 6
  • Xiao Sun
    • 6
  • Yong Zhang
    • 6
  • Gane Ka-Shu Wong
    • 3
    • 5
    • 8
  1. 1.Department of OncologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada
  3. 3.Department of MedicineUniversity of AlbertaEdmontonCanada
  4. 4.Department of Engineering Mathematics & PhysicsFayoum UniversityFayoumEgypt
  5. 5.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  6. 6.Guangdong Provincial Engineer Laboratory of Proteomics BGI-ShenzhenYantian District, ShenzhenChina
  7. 7.Department of Oncology, Division of Experimental OncologyCross Cancer Institute 11560 University Ave.EdmontonCanada
  8. 8.BGI-ShenzhenShenzhenChina

Personalised recommendations