Skip to main content
Log in

Toxicity Studies of Poly(Anhydride) Nanoparticles as Carriers for Oral Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the acute and subacute toxicity of poly(anhydride) nanoparticles as carriers for oral drug/antigen delivery.

Methods

Three types of poly(anhydride) nanoparticles were assayed: conventional (NP), nanoparticles containing 2-hydroxypropyl-β-cyclodextrin (NP-HPCD) and nanoparticles coated with poly(ethylene glycol) 6000 (PEG-NP). Nanoparticles were prepared by a desolvation method and characterized in terms of size, zeta potential and morphology. For in vivo oral studies, acute and sub-acute toxicity studies were performed in rats in accordance to the OECD 425 and 407 guidelines respectively. Finally, biodistribution studies were carried out after radiolabelling nanoparticles with 99mtechnetium.

Results

Nanoparticle formulations displayed a homogeneous size of about 180 nm and a negative zeta potential. The LD50 for all the nanoparticles tested was established to be higher than 2000 mg/kg bw. In the sub-chronic oral toxicity studies at two different doses (30 and 300 mg/kg bw), no evident signs of toxicity were found. Lastly, biodistribution studies demonstrated that these carriers remained in the gut with no evidences of particle translocation or distribution to other organs.

Conclusions

Poly(anhydride) nanoparticles (either conventional or modified with HPCD or PEG6000) showed no toxic effects, indicating that these carriers might be a safe strategy for oral delivery of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

%ID/g:

percentage of injected dose per gram

99mTc:

technetium-99m

ALT:

alanine transaminase

AST:

aspartate transaminase

Bw:

body weight

CT:

computed tomography

Hb:

hemoglobin

HCT:

hematocrit

HPCD:

2-hydroxipropyl-β-cyclodextrin

ITLC:

instant thin layer chromatography

MCH:

mean corpuscular hemoglobin

MCHC:

mean corpuscular hemoglobin concentration

MCV:

mean corpuscular volume

NP:

conventional poly(anhydride) nanoparticles

NP-HPCD:

nanoparticles containing 2-hydroxypropyl-β-cyclodextrin

NP-PEG:

pegylated poly(anhydride) nanoparticles

PEG:

poly(ethylene glycol) 6000

PLT:

platelet count

PVM/MA:

copolymer of methyl vinyl ether and maleic anhydride

RBC:

red blood corpuscles count

SPECT-CT:

single-photon emission computed tomography

WBC:

white blood corpuscles count

REFERENCES

  1. Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol. 2011;7(4):489–503.

    Article  PubMed  CAS  Google Scholar 

  2. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–49.

    Article  Google Scholar 

  3. Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med. 2006;6(6):651–63.

    Article  PubMed  CAS  Google Scholar 

  4. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    Article  PubMed  CAS  Google Scholar 

  5. Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target. 2007;15(10):641–63.

    Article  PubMed  CAS  Google Scholar 

  6. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–75.

    Article  PubMed  CAS  Google Scholar 

  7. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surf B: Biointerf. 2010;75(1):1–18.

    Article  CAS  Google Scholar 

  8. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  PubMed  Google Scholar 

  9. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552–8.

    Article  PubMed  CAS  Google Scholar 

  10. Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano. 2010;4(10):5527–31.

    Article  PubMed  CAS  Google Scholar 

  11. Rivière G. European and international standardisation progress in the field of engineered nanoparticles. Inhal Toxicol. 2009;21 Suppl 1:2–7.

    Article  PubMed  Google Scholar 

  12. Clift MJD, Gehr P, Rothen-Rutishauser B. Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol. 2011;85:723–31.

    Article  PubMed  CAS  Google Scholar 

  13. Organization for Economic Cooperation and Development. Nanosafety at the OECD: the First Five Years 2006–2010. Paris: OECD Publishing; 2011. Available from: http://www.oecd.org/dataoecd/6/25/47104296.pdf.

  14. Organization for Economic Cooperation and Development. Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. Paris: OECD; 2009. Vol. No. 15 - ENV/JM/MONO (2009)21.

    Google Scholar 

  15. Arbós P, Campanero MA, Arangoa MA, Irache JM. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. J Control Release. 2004;96(1):55–65.

    Article  PubMed  Google Scholar 

  16. Gómez S, Gamazo C, Roman BS, Ferrer M, Sanz ML, Irache JM. Gantrez AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine. 2007;25(29):5263–71.

    Article  PubMed  Google Scholar 

  17. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, et al. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci. 2009;38(4):405–13.

    Article  PubMed  Google Scholar 

  18. Yoncheva K, Lizarraga E, Irache JM. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. Eur J Pharm Sci. 2005;24(5):411–9.

    Article  PubMed  CAS  Google Scholar 

  19. Yoncheva K, Guembe L, Campanero MA, Irache JM. Evaluation of bioadhesive potential and intestinal transport of pegylated poly(anhydride) nanoparticles. Int J Pharm. 2007;334(1–2):156–65.

    Article  PubMed  CAS  Google Scholar 

  20. Yoncheva K, Centelles MN, Irache JM. Development of bioadhesive amino-pegylated poly(anhydride) nanoparticles designed for oral DNA delivery. J Microencapsul. 2008;25(2):82–9.

    Article  PubMed  CAS  Google Scholar 

  21. Agüeros M, Zabaleta V, Espuelas S, Campanero MA, Irache JM. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J Control Release. 2010;145(1):2–8.

    Article  PubMed  Google Scholar 

  22. Calvo J, Lavandera JL, Agüeros M, Irache JM. Cyclodextrin/ poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone. Biomed Microdevices. 2011;13(6):1015–25.

    Article  PubMed  CAS  Google Scholar 

  23. Ojer P, Salman H, Da Costa Martins R, Calvo J, López de Cerain A, Gamazo C, et al. Spray-drying of poly(anhydride) nanoparticles for drug/antigen delivery. J Drug Del Sci Tech. 2010;20(5):353–9.

    CAS  Google Scholar 

  24. Agüeros M, Campanero MA, Lrache JM. Simultaneous quantification of different cyclodextrins and Gantrez by HPLC with evaporative light scattering detection. J Pharm Biomed Anal. 2005;39(3–4):495–502.

    Article  PubMed  Google Scholar 

  25. Zabaleta V, Campanero MA, Irache JM. An HPLC with evaporative light scattering detection method for the quantification of PEGs and Gantrez in PEGylated nanoparticles. J Pharm Biomed Anal. 2007;44(5):1072–8.

    Article  PubMed  CAS  Google Scholar 

  26. Areses P, Agüeros MT, Quincoces G, Collantes M, Richter JÁ, López-Sánchez LM, et al. Molecular imaging techniques to study the biodistribution of orally administered (99m)Tc-labelled naive and ligand-tagged nanoparticles. Mol Imaging Biol. 2011;13(6):1215–23.

    Article  PubMed  Google Scholar 

  27. Organization for Economic Cooperation and Development. Test No. 425: acute oral toxicity: up-and-down procedure. Guidelines for the testing of chemicals. Paris: OECD; 2006.

    Google Scholar 

  28. Organization for Economic Cooperation and Development. Test No. 407: repeated dose 28-day oral toxicity study in rodents. Guidelines for the testing of chemicals. Paris: OECD; 2001.

    Google Scholar 

  29. Arbós P, Wirth M, Arangoa MA, Gabor F, Irache JM. Gantrez AN as a new polymer for the preparation of ligand-nanoparticle conjugates. J Control Release. 2002;83(3):321–30.

    Article  PubMed  Google Scholar 

  30. Sharma NC, Galustians HJ, Qaquish J, Galustians A, Rustogi KN, Petrone ME, et al. The clinical effectiveness of a dentifrice containing triclosan and a copolymer for controlling breath odor measured organoleptically twelve hours after toothbrushing. J Clin Dent. 1999;10(4):131–4.

    PubMed  CAS  Google Scholar 

  31. Andrews GP, Jones DS. Poly(methyl vinyl ether/maleic anhydride). In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. 6th ed. Washington DC: American Pharmacists Association; 2009. p. 534–5. London: Pharmaceutical Press.

    Google Scholar 

  32. Chiu GN, Wong MY, Ling LU, Shaikh IM, Tan KB, Chaudhury A, et al. Lipid-based nanoparticulate systems for the delivery of anti-cancer drug cocktails: implications on pharmacokinetics and drug toxicities. Curr Drug Metab. 2009;10(8):861–74.

    Article  PubMed  CAS  Google Scholar 

  33. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  34. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30:2329–39.

    Article  PubMed  CAS  Google Scholar 

  35. Pokhartar V, Dhar S, Bhumkar D, Mali V, Bodhankar S, Prasad BLV. Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: a novel carrier for therapeutic agents. J Biomed Nanotecnol. 2009;5:233–9.

    Article  Google Scholar 

  36. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi J-W, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Let. 2006;161:115–23.

    Article  CAS  Google Scholar 

  37. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168:176–85.

    Article  PubMed  CAS  Google Scholar 

  38. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13:896–901.

    Article  PubMed  CAS  Google Scholar 

  39. das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8(8):1085–104.

    Article  PubMed  Google Scholar 

  40. Hayes AW. Principles and methods of toxicology. 4th ed. Philadelphia: Taylor & Francis; 2001.

    Google Scholar 

  41. Dhar S, Mali V, Bodhankar S, Shiras A, Prasad BLV, Pokharkar V. Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. J Appl Toxicol. 2011;31:411–20.

    Article  PubMed  CAS  Google Scholar 

  42. Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, et al. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci. 2010;99:4992–5010.

    Article  PubMed  CAS  Google Scholar 

  43. Kim WY, Kim J, Park JD, Ryu HY, Yu IJ. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. J Toxicol Envirom Health A. 2009;72:1279–84.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Ministry of Science and Innovation in Spain (projects SAF2008-02538) and Caja Navarra Foundation (Grant 10828). Patricia Ojer was also financially supported by a grant from the Department of Education of the Gobierno de Navarra in Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Irache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojer, P., de Cerain, A.L., Areses, P. et al. Toxicity Studies of Poly(Anhydride) Nanoparticles as Carriers for Oral Drug Delivery. Pharm Res 29, 2615–2627 (2012). https://doi.org/10.1007/s11095-012-0791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0791-8

KEY WORDS

Navigation