Skip to main content

Advertisement

Log in

Dextran-Catechin Conjugate: A Potential Treatment Against the Pancreatic Ductal Adenocarcinoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A polysaccharide-flavonoid conjugate was developend and proposed for the treatment of pancreatic ductal adenocarcinoma (PDAC).

Methods

The conjugate was synthesized by free radical grafting reaction between catechin and dextran. The chemical characterization of the conjugate was obtained by UV-Vis, 1H-NMR, FT-IR and GPC analyses, while the functionalization degree was determined by the Folin-Ciocalteu assay. The biological activity of the catechin-dextran conjugate was tested on two different cell lines derived from human pancreatic cancer (MIA PaCa-2 and PL45 cells), and the toxicity towards human pancreatic nestin-expressing cells evaluated.

Results

Both the cancer cell lines are killed when exposed to the conjugate, and undergo apoptosis after the incubation with catechin-dextran which resulted more effective in killing pancreatic tumor cells compared to the catechin alone. Moreover, our experimental data indicate that the conjugate was less cytotoxic to human pancreatic nestin-expressing cells which are considered a good model of non-neoplastic pancreatic cells.

Conclusion

The suitability of newly synthesized Dextran-Catechin conjugate in the treatment of PDAC was proved confirming the high potential application of the proposed macromolecula system in the cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer Statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Baghurst PA, Mc Michael AJ, Slavotinek AH, Baghurst KI, Boyle P, Walker AM. A case–control study of diet and cancer of the pancreas. Am J Epidemiol. 1991;134:167–79.

    PubMed  CAS  Google Scholar 

  3. Berrington de Gonzalez A, Sweetland S, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer. 2000;89:519–23.

    Article  Google Scholar 

  4. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer: a meta-analysis. JAMA, J Am Med Assoc. 1995;273:1605–9.

    Article  CAS  Google Scholar 

  5. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.

    Article  PubMed  CAS  Google Scholar 

  6. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    PubMed  CAS  Google Scholar 

  7. Neuhaus P, Oettle H, Post S, Gellert K, Ridwelski K, Schramm H, et al. A randomised, prospective, multicenter, phase III trial of adjuvant chemotherapy with gemcitabine vs. observation in patients with resected pancreatic cancer. Proc Ann Meet Am Soc Clin Oncol. 2005;4013.

  8. Abbruzzese JL. New applications of gemcitabine and future directions in the management of pancreatic cancer. Cancer. 2002;95:941–5.

    Article  PubMed  CAS  Google Scholar 

  9. Oettle H, Arning M, Pelzer U, Arnold D, Stroszczynski C, Langrehr J, et al. A phase II trial of gemcitabine in combination with 5-fluorouracil (24-hour) and folinic acid in patients with chemonaive advanced pancreatic cancer. Ann Oncol. 2000;11:1267–72.

    Article  PubMed  CAS  Google Scholar 

  10. Kurtz J, Kohser F, Negrier S, Trillet Lenoir V, Walter S, Limacher J, et al. Gemcitabine and protracted 5-FU for advanced pancreatic cancer. A phase II study. Hepato-Gastroenterology. 2000;47:1450–3.

    PubMed  CAS  Google Scholar 

  11. Heinemann V. Gemcitabine: progress in the treatment of pancreatic cancer. Oncology. 2001;60:8–18.

    Article  PubMed  CAS  Google Scholar 

  12. Kornek G, Potter R, Selzer E, Schratter A, Pur HU, Rogy M, et al. Combined radiochemotherapy of locally advanced unresectable pancreatic adenocarcinoma with mitomycin C plus 24-hour continuous infusional gemcitabine. Int J Radiat Oncol Biol Phys. 2001;49:665–71.

    Article  PubMed  CAS  Google Scholar 

  13. Yang CS, Chung JY, Yang G, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J Nutr. 2000;130:472S–8S.

    PubMed  CAS  Google Scholar 

  14. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer. 2001;84:844–50.

    Article  PubMed  CAS  Google Scholar 

  15. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 2003;63:8118–21.

    PubMed  CAS  Google Scholar 

  16. Pellecchia M, Reed JC. Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des. 2004;10:1387–98.

    Article  PubMed  CAS  Google Scholar 

  17. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  PubMed  CAS  Google Scholar 

  18. Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 2006;24:39–47.

    Article  PubMed  CAS  Google Scholar 

  19. Greco F, Vicent MJ. Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv Drug Delivery Rev. 2009;61:1203–13.

    Article  CAS  Google Scholar 

  20. Maeda H. Polymer conjugated macromolecular drugs for tumor-specific targeting. In: Domb AJ, editor. Polymeric site-specific pharmacotherapy. New York: John Wiley and Sons; 1994. p. 95–116.

    Google Scholar 

  21. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug–polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5:83–94.

    PubMed  CAS  Google Scholar 

  22. Meerum Terwogt JM, Bokkel Huinink WW, Schellens JHM, Schot M, Mandjes I, Zurlo M, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water soluble polymer conjugated prodrug of paclitaxel. Anti-Cancer Drug Des. 2001;12:315–23.

    Article  CAS  Google Scholar 

  23. Minko T, Kopeèková P, Pozharov V, Kopeèek J. HPMA copolymer bound Adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release. 1998;54:223–33.

    Article  PubMed  CAS  Google Scholar 

  24. Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1:208–18.

    Article  PubMed  CAS  Google Scholar 

  25. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009;10:1923–30.

    Article  PubMed  CAS  Google Scholar 

  26. Cirillo G, Puoci F, Iemma F, Curcio M, Parisi OI, Spizzirri UG, et al. Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharm Dev Technol. 2009.doi:10.3109/10837450.2010.546413.

  27. Cirillo G, Kraemer K, Fuessel S, Puoci F, Curcio M, Spizzirri UG, et al. Biological activity of a gallic acid-gelatin conjugate. Biomacromolecules. 2010;11:3309–15.

    Article  PubMed  CAS  Google Scholar 

  28. Shrivastava PK, Shrivastava SK. Dextran polysaccharides: successful macromolecular carrier for drug delivery. Int J Pharm Sci. 2009;1:353–68.

    CAS  Google Scholar 

  29. Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Delivery Rev. 2001;53:171–216.

    Article  CAS  Google Scholar 

  30. Cho HJ, Chong S, Chung SJ, Shim CK, Kim DD. Poly-L-arginine and dextran sulfate-based nanocomplex for epidermal growth factor receptor (EGFR) siRNA delivery: its application for head and neck cancer treatment. Pharm Res. 2011. doi:10.1007/s11095-011-0642-z.

  31. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14:3629–37.

    Article  PubMed  Google Scholar 

  32. Itakura J, Ishiwata T, Friess H, Fujii H, Matsumoto Y, Büchler MW, et al. Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clin Cancer Res. 1997;3:1309–16.

    PubMed  CAS  Google Scholar 

  33. Wang H, Helliwell K, You X. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 2000;68:115–21.

    Article  CAS  Google Scholar 

  34. Pan Y, Zhu J, Wang H, Zhang X, Zhang Y, He C, et al. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem. 2007;103:913–8.

    Article  CAS  Google Scholar 

  35. Waterman KC, Adami RC, Alsante KM, Hong J, Landis MS, Lombardo F, et al. Hydrolysis in pharmaceutical formulations. Pharm Dev Technol. 2002;7:1–32.

    Article  PubMed  CAS  Google Scholar 

  36. Lee KM, Nguyen C, Ulrich AB, Pour PM, Ouellette MM. Immortalization with telomerase of the Nestin-positive cells of the human pancreas. Biochem Biophys Res Commun. 2003;301:1038–44.

    Article  PubMed  CAS  Google Scholar 

  37. James R, Warburton S. Hemocytometer cell counts and viability studies: cell quantification. In: Doyle A, Grifith JB, editors. Cell and tissue culture: laboratory procedures in biotechnology. London: John Wiley; 1999. p. 57–61.

    Google Scholar 

  38. Tomonori N, Keisuke I, Yasuo I. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res. 2005;11:6040–9.

    Article  Google Scholar 

  39. Diaz G, Liu S, Isola R, Diana A, Falchi AM. Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes. Histochem Cell Biol. 2003;120:319–25.

    Article  PubMed  CAS  Google Scholar 

  40. Uyama H, Maruichi N, Tonami H, Kobayashi S. Peroxidase-catalyzed oxidative polymerization of bisphenols. Biomacromolecules. 2002;3:187–93.

    Article  PubMed  CAS  Google Scholar 

  41. Quatresooz P, Pierard GE, Pierard-Franchimont C, Arrese JE, Blaise G, Bourguignon R, et al. Molecular pathways supporting the proliferation staging of malignant melanoma. Int J Mol Med. 2009;24:295–301.

    PubMed  CAS  Google Scholar 

  42. Teo BKK, Goh SH, Kustandi TS, Loh WW, Low HY, Yim EKF. The effect of micro and nanotopography on endocytosis in drug and gene delivery systems. Biomaterials. 2011;32:9866–75.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was financially supported by MIUR (Programma di ricerca di rilevante interesse nazionale 2008), and University of Calabria funds.

Financial support of Regional Operative Program (ROP) Calabria ESF 2007/2013 – IV Axis Human Capital – Operative Objective M2 - Action D.5 is gratefully acknowledged. Authors are solely responsible for the work.

Authors thank Prof. Alfred Cuschieri from the Medical Science lab Scuola Superiore S. Anna, Pisa, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cirillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittorio, O., Cirillo, G., Iemma, F. et al. Dextran-Catechin Conjugate: A Potential Treatment Against the Pancreatic Ductal Adenocarcinoma. Pharm Res 29, 2601–2614 (2012). https://doi.org/10.1007/s11095-012-0790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0790-9

KEY WORDS

Navigation