Skip to main content
Log in

Effect of Compression on Non-isothermal Crystallization Behaviour of Amorphous Indomethacin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the effect of tablet compression on the physical stability of amorphous indomethacin.

Methods

The amorphous indomethacin generated by melt cooling, rapid (5°C/min) or slow (0.2°C/min) cooling, was evaluated by PXRD, mDSC and FTIR analysis. Non-isothermal crystallisation behaviour was assessed using mDSC and any structural changes with compression were monitored by FTIR. Amorphous indomethacin was compressed in a DSC pan using a custom made die cavity-punch setup and further analysed in the primary container to minimize stress due to sample transfer and preparation.

Results

Compression of amorphous indomethacin induced and increased the extent of crystallisation upon heating. DSC results revealed that amorphous indomethacin generated by rapid cooling is more prone to compression induced crystallisation than the slowly cooled one. Onset temperature for crystallisation (T c ) of uncompressed slowly and rapidly cooled samples are 121.4 and 124°C and after compression T c decreased to ca 109 and ca 113°C, respectively. Compression of non-aged samples led to higher extent of crystallisation predominantly into γ-form. Aging followed by compression led to crystallisation of mainly the α-form.

Conclusions

Compression affects the physical stability of amorphous indomethacin. Structural changes originated from tablet compression should be duly investigated for the stable amorphous formulation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DT:

dwell time

FTIR (ATR):

Fourier transform infrared spectroscopy (Attenuated total reflectance)

m:

minute

mDSC:

modulated differential scanning calorimetry

PMMA:

poly(methyl methacrylate)

PXRD:

powder x-ray diffraction

T c :

onset temperature for crystallisation

T g :

glass transition temperature

TSDC:

thermally stimulated depolarization current spectroscopy

ΔC p :

heat capacity change

ΔH c :

heat of crystallization

ΔH f (α) :

melting enthalpy of α-form

ΔH f (γ) :

melting enthalpy of γ-form

ΔH rec :

enthalpy recovery

REFERENCES

  1. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  PubMed  CAS  Google Scholar 

  2. Okumura T, Ishida M, Takayama K, Otsuka M. Polymorphic transformation of indomethacin under high pressures. J Pharm Sci. 2006;95(3):689–700.

    Article  PubMed  CAS  Google Scholar 

  3. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.

    Article  PubMed  CAS  Google Scholar 

  4. Carpentier L, Decressain R, Desprez S, Descamps M. Dynamics of the amorphous and crystalline α-, γ-phases of indomethacin. J Phys Chem B. 2006;110(1):457–64.

    Article  PubMed  CAS  Google Scholar 

  5. Vyazovkin S, Dranca I. Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B. 2007;111(25):7283–7.

    Article  PubMed  CAS  Google Scholar 

  6. Bhugra C, Shmeis R, Pikal MJ. Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin. J Pharm Sci. 2008;97(10):4446–58.

    Article  PubMed  CAS  Google Scholar 

  7. Andronis V, Yoshioka M, Zografi G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci. 1997;86(3):346–51.

    Article  PubMed  CAS  Google Scholar 

  8. Desprez S, Descamps M. Transformations of glassy indomethacin induced by ball-milling. J Non-Cryst Solids. 2006;352(42–49):4480–5.

    Article  CAS  Google Scholar 

  9. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin. Eur J Pharm Biopharm. 2012;80(2):459–64.

    Article  PubMed  CAS  Google Scholar 

  10. Van Den Mooter G, Craig DQM, Royall PG. Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry. J Pharm Sci. 2001;90(8):996–1003.

    Article  Google Scholar 

  11. Forster A, Hempenstall J, Rades T. Investigation of drug/polymer interaction in glass solutions prepared by melt extrusion. Int J Vib Spec. 2001;5(6): http://www.ijvs.com/volume5/edition2/section3.html accessed on May 4, 2012.

  12. Capaldi FM, Boyce MC, Rutledge GC. Enhanced mobility accompanies the active deformation of a glassy amorphous polymer. Phys Rev Lett. 2002;89(17):175505 (1–4).

    Article  PubMed  Google Scholar 

  13. Ayenew Z, Paudel A, Van den Mooter G. Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25. Eur J Pharm Biopharm. 2012;81(1):207–13.

    Article  PubMed  CAS  Google Scholar 

  14. Daver F, Blake A, Cakmak M. Stages of structural ordering leading to stress induced crystallization of PEEK films: a mechano-optical study on deformation, relaxation and retraction. Macromolecules. 2009;42(7):2626–33.

    Article  CAS  Google Scholar 

  15. Lee HN, Riggleman RA, de Pablo JJ, Ediger M. Deformation-induced mobility in polymer glasses during multistep creep experiments and simulations. Macromolecules. 2009;42(12):4328–36.

    Article  CAS  Google Scholar 

  16. Lee H, Ediger MD. Interaction between physical aging, deformation, and segmental mobility in poly(methyl methacrylate) glasses. J Chem Phys. 2010;133(014901):1–9.

    Google Scholar 

  17. Imamura K, Kagotani R, Nomura M, Tanaka K, Kinugawa K, Nakanishi K. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices. Int J Pharm. 2011;408(1–2):76–83.

    Article  PubMed  CAS  Google Scholar 

  18. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    PubMed  CAS  Google Scholar 

  19. Fukuoka E, Makita M, Yamamura S. Some physicochemical properties of glassy indomethacin. Chem Pharm Bull. 1986;34(10):4314–21.

    Article  PubMed  CAS  Google Scholar 

  20. Karmwar P, Boetker JP, Graeser KA, Strachan CJ, Rantanen J, Rades T. Investigations on the effect of different cooling rates on the stability of amorphous indomethacin. Eur J Pharm Sci. 2011;44(3):341–50.

    Article  PubMed  CAS  Google Scholar 

  21. Wojnarowska Z, Adrjanowicz K, Wlodarczyk P, Kaminska E, Kaminski K, Grzybowska K, et al. Broadband dielectric relaxation study at ambient and elevated pressure of molecular dynamics of pharmaceutical: indomethacin. J Phys Chem B. 2009;113(37):12536–45.

    Article  PubMed  CAS  Google Scholar 

  22. Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non-Cryst Solids. 2000;271(3):236–48.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

ZA is grateful for the financial support of IRO, KU Leuven. AP also acknowledges D.B.O.F., KU Leuven, for providing a PhD grant. Department of Metallurgy and Materials Engineering (MTM), KU Leuven is also greatly acknowledged for providing facility for the ATR-FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Van den Mooter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayenew, Z., Paudel, A., Rombaut, P. et al. Effect of Compression on Non-isothermal Crystallization Behaviour of Amorphous Indomethacin. Pharm Res 29, 2489–2498 (2012). https://doi.org/10.1007/s11095-012-0778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0778-5

KEY WORDS

Navigation