Skip to main content
Log in

Magnetised Thermo Responsive Lipid Vehicles for Targeted and Controlled Lung Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Conditions such as lung cancer currently lack non-invasively targetable and controlled release topical inhalational therapies. Superparamagnetic iron-oxide nanoparticles (SPIONs) have shown promising results as a targetable therapy. We aimed to fabricate and test the in-vitro performance of particles with SPION and drug within a lipid matrix as a potentially targetable and thermo-sensitive inhalable drug-delivery system.

Methods

Budesonide and SPIONs were incorporated into lipid particles using oil-in-water emulsification. Particles size, chemical composition, responsiveness to magnetic field, thermosensitiveness and inhalation performance in-vitro were investigated.

Results

Particles of average diameter 2–4 μm with budesonide and SPIONs inside the lipid matrix responded to a magnetic field with 100% extraction at a distance of 5 mm. Formulations were shown to have accelerated rate of drug release at hyperthermic temperatures (45°C)—controlled release. The produced inhalation dry powder presented promising inhalation performance, with an inhalable fine particle fraction of 30%.

Conclusions

The lipid system presented thermo-sensitive characteristics, suitable for controlled delivery, the model drug and SPION loaded lipid system was magnetically active and movable using simple permanent magnets, and the system demonstrates promise as an effective drug vehicle in targeted and controlled inhalation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABST:

acrylonitrile butadiene styrene thermoplastic

AFM:

atomic forced microscopy

DPI:

dry powder for inhalation

DSC:

differential scanning calorimetry

EDX:

energy-dispersing X-ray analysis

HPMC:

hydroxypropyl methylcellulose

Lip-Bud:

budesonide containing lipid microcapsules

Lip-Bud-SPION:

budesonide and SPION containing lipid microcapsules

Lipid:

glyceryl behenate (Compritol 888)

logP:

partition coefficient

SEM:

scanning electron microscopy

SIOS:

scanning ion occlusion sensing

SPION:

superparamagnetic iron-oxide nanoparticles

XRD:

X-ray diffraction

REFERENCES

  1. Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res. 2001;95(2):200–6.

    Article  PubMed  CAS  Google Scholar 

  2. Organization, W.H., Cancer, in Fact sheet N°297. 2009.

  3. Silvestri GA, Alberg AJ, Ravenel J. The changing epidemiology of lung cancer with a focus on screening. Br Med J. 2009;339(b3053):451–4.

    Google Scholar 

  4. Limited TG, Therapeutic Guidelines: Respiratory. Therapeutic Guidelines, ed. T.G. Limited. Vol. 3. 2005, Melbourne. 210.

  5. Martin AR, Finlay WH. Alignment of magnetite-loaded high aspect ratio aerosol drug particles with magnetic fields. Aerosol Sci Technol. 2008;42:295–8.

    Article  CAS  Google Scholar 

  6. Martin AR, Finlay WH. Enhanced deposition of high aspect ratio aerosols in small airway bifurcations using magnetic field alignment. J Aerosol Sci. 2008;39(8):295.

    Article  Google Scholar 

  7. Gupta AK, et al. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.

    Article  PubMed  CAS  Google Scholar 

  8. Douziech-Eyrolles L, et al. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2007;2(4):541–50.

    PubMed  Google Scholar 

  9. Amirfazli A, Amirfazli A. Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol. 2007;2(8):467–8.

    Article  PubMed  CAS  Google Scholar 

  10. Veiseh O, et al. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham CH, et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med. 2005;53(5):999–1005.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson SA, et al. Magnetic resonance contrast enhancement neovasculature with α(v)β3-targeted nanoparticles. Magn Reson Med. 2000;44(3):433–9.

    Article  PubMed  CAS  Google Scholar 

  13. Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv. 2009;6(1):53–70.

    Article  PubMed  CAS  Google Scholar 

  14. Jalilian AR, et al. Preparation and biological evaluation of [67Ga]-labeled- superparamagnetic nanoparticles in normal rats. Radiochim Acta. 2009;97(1):51–6.

    Article  CAS  Google Scholar 

  15. Talelli M, et al. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir. 2009;25(4):2060–7.

    Article  PubMed  CAS  Google Scholar 

  16. Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.

    Article  PubMed  CAS  Google Scholar 

  17. Jain TK, et al. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2008;5(2):316–27.

    Article  PubMed  CAS  Google Scholar 

  18. Soenen SJ, et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011;6(5):446–65.

    Article  CAS  Google Scholar 

  19. Neuberger T, et al. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483–96.

    Article  CAS  Google Scholar 

  20. Kettering M, et al. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys Med Biol. 2009;54(17):5109–21.

    Article  PubMed  CAS  Google Scholar 

  21. Dames P, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol. 2007;2(8):495–9.

    Article  PubMed  Google Scholar 

  22. Son Y-J, McConville JT. Advancements in dry powder delivery to the lung. Drug Dev Ind Pharm. 2008;34(9):948–59.

    Article  PubMed  CAS  Google Scholar 

  23. Reddy LH, et al. Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm Dev Technol. 2006;11(2):167–77.

    Article  PubMed  CAS  Google Scholar 

  24. Mezzena M, et al. Solid lipid budesonide microparticles for controlled release inhalation therapy. AAPS J. 2009;11(4):771–8.

    Article  PubMed  CAS  Google Scholar 

  25. Weyhers H, et al. Solid lipid nanoparticles (SLN)–effects of lipid composition on in vitro degradation and in vivo toxicity. Pharmazie. 2006;61(6):539–44.

    PubMed  CAS  Google Scholar 

  26. Sanna V, et al. Preparation and in vivo toxicity study of solid lipid microparticles as carrier for pulmonary administration. AAPS PharmSciTech. 2004;5(2):e27.

    Article  PubMed  Google Scholar 

  27. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  28. Salama RO, et al. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  29. Salama RO, et al. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  30. Young PM, et al. Recent advances in understanding the influence of composite-formulation properties on the performance of dry powder inhalers. Physica B. 2007;394(2):315–9.

    Article  CAS  Google Scholar 

  31. Martonen TB, et al. Issues in drug delivery: concepts and practice. Respir Care. 2005;50(9):25.

    Google Scholar 

  32. Bhavsar MD, Tiwari SB, Amiji MM. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J Control Release. 2006;110(2):422–30.

    Article  PubMed  CAS  Google Scholar 

  33. Heslinga MJ, Mastria EM, Eniola-Adefeso O. Fabrication of biodegradable spheroidal microparticles for drug delivery applications. J Control Release. 2009;138(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  34. Sturesson C, et al. Encapsulation of rotavirus into poly(lactide-co-glycolide) microspheres. J Control Release. 1999;59(3):377–89.

    Article  PubMed  CAS  Google Scholar 

  35. Sowerby SJ, Broom MF, Petersen GB. Dynamically resizable nanometre-scale apertures for molecular sensing. Sensors Actuators B Chem. 2007;123(1):325–30.

    Article  Google Scholar 

  36. Willmott GR, et al. Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Matter. 2010;22(45):454116.

    Article  PubMed  CAS  Google Scholar 

  37. Roberts GS, et al. Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small. 2010;6(23):2653–8.

    Article  PubMed  CAS  Google Scholar 

  38. Vogel R, et al. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem. 2011;83(9):3499–506.

    PubMed  CAS  Google Scholar 

  39. Ali HRH, et al. Vibrational spectroscopic study of budesonide. J Raman Spectrosc. 2007;38(7):903–8.

    Article  CAS  Google Scholar 

  40. Jores K, et al. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharm Res. 2005;22(11):1887–97.

    Article  PubMed  CAS  Google Scholar 

  41. Hamdani J, et al. Physical and thermal characterisation of Precirol and Compritol as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm. 2003;260(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  42. Renishaw P. How Renishaw’s inVia Raman system provides high spectral resolution from a 250 mm focal length spectrometer. Technology note from the Spectroscopy Products Division, 2005(1).

  43. Gupta M, Bhargava HN. Development and validation of a high-performance liquid chromatographic method for the analysis of budesonide. J Pharm Biomed Anal. 2006;40(2):423–8.

    Article  PubMed  CAS  Google Scholar 

  44. Poklar N, et al. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex. Proc Natl Acad Sci. 1996;93(15):7606–11.

    Article  PubMed  CAS  Google Scholar 

  45. Montaseri H, et al. The effect of temperature, ph, and different solubilizing agents on stability of taxol. Iranian J Pharm Sci. 2004;1(1):8.

    Google Scholar 

  46. Jordan A. Hyperthermia classic commentary: ' Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51–68. Vol. 25. 2009. 512–6.

  47. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  PubMed  CAS  Google Scholar 

  48. Veiseh O, et al. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev. 2011;63(8):582–96.

    Article  PubMed  CAS  Google Scholar 

  49. Wauthoz N, et al. In vivo assessment of temozolomide local delivery for lung cancer inhalation therapy. Eur J Pharm Sci. 2010;39(5):402–11.

    Article  PubMed  CAS  Google Scholar 

  50. Shoaib MH, et al. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci. 2006;19(2):119–24.

    PubMed  CAS  Google Scholar 

  51. Joshi MR, Misra A. Liposomal budesonide for dry powder inhaler: preparation and stabilization. AAPS PharmSciTech. 2001;2(4):25.

    Article  PubMed  CAS  Google Scholar 

  52. Hoe S, Young PM, Traini D. A review of electrostatic measurement techniques for aerosol drug delivery to the lung: implications in aerosol particle deposition. J Adhes Sci Technol. 2011;25(4–5):385–405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Chrzanowski.

electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, D., Scalia, S., Vogel, R. et al. Magnetised Thermo Responsive Lipid Vehicles for Targeted and Controlled Lung Drug Delivery. Pharm Res 29, 2456–2467 (2012). https://doi.org/10.1007/s11095-012-0774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0774-9

KEY WORDS

Navigation