Skip to main content
Log in

Studies on the Effect of the Size of Polycaprolactone Microspheres for the Dispersion of Salbutamol Sulfate from Dry Powder Inhaler Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 August 2012

Abstract

Purpose

To study the effect of the size of the surface-coated polycaprolactone (PCL) microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from Dry Powder Inhaler (DPI) formulations.

Methods

The microparticles were fabricated using an emulsion technique in four different sizes (25, 48, 104 and 150 μm) and later coated with Magnesium stearate (MgSt) and leucine. They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS from powder mixtures was determined by a Twin Stage Impinger (TSI).

Results

As the carrier size increased from 25 μm to 150 μm, the FPF of the SS delivered by the coated PCL particles increased approximately four fold. A linear relationship was found between the FPF and Volume mean Diameter (VMD) of the particles over this range.

Conclusions

The dispersion behaviour of SS from PCL carriers was dependent on the inherent size of the carriers and the increased FPF of SS with increased carrier size probably reflects the higher mechanical forces produced due to the carrier-carrier collisions or collisions between the carrier particles and the internal walls of the inhaler during aerosolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

d:

diameter

DCM:

dichloromethane

DPI:

dry powder inhaler

ED:

emitted dose

FPF:

fine particle fraction

HPLC:

high performance liquid chromatography

MgSt:

magnesium stearate

MW :

molecular weight

N:

particle number

PCL:

polycaprolactone

PVA:

polyvinyl alcohol

RD:

recovered dose

S1:

stage one

S2:

stage two

SEM:

scanning electron microscope

SS:

salbutamol sulfate

SX:

salmeterol xinafoate

TSI:

twin stage impinger

UV:

ultraviolet

VMD:

volume median diameter

References

  1. Hickey AJ, Concessio NM. Descriptors of irregular particle morphology and powder properties. Adv Drug Delivery Rev. 1997;26(1):29–40.

    Article  CAS  Google Scholar 

  2. Young PM, Cocconi D, Colombo P, Bettini R, Price R, Steele DF, et al. Characterization of a surface modified dry powder inhalation carrier prepared by “particle smoothing”. J Pharm Pharmacol. 2002;54:1339–44.

    Article  PubMed  CAS  Google Scholar 

  3. Islam N, Stewart P, Larson I, Hartley P. Surface roughness contribution to the adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force microscopy. J Pharm Sci. 2005;94(7):1500–11.

    Article  PubMed  CAS  Google Scholar 

  4. Begat P, Price R, Harris H, Morton D, Staniforth J. The influence of force control agents on the cohesive-adhesive balance in dry powder inhaler formulations. KONA. 2005;23:109–21.

    CAS  Google Scholar 

  5. French DL, Edwards DA, Niven RW. The influence of formulation on emission, deaggregation and deposition of dry powders for inhalation. J Aerosol Sci. 1996;27(5):769–83.

    Article  CAS  Google Scholar 

  6. Steckel H, Muller BW. In vitro evaluation of dry powder inhalers II: influence of carrier particle size and concentration on in vitro deposition. Int J Pharm. 1997;154(1):31–7.

    Article  CAS  Google Scholar 

  7. Zeng XM, Martin GP, Marriott C, Pritchard J. The influence of carrier morphology on drug delivery by dry powder inhalers. Int J Pharm. 2000;200(1):93–106.

    Article  PubMed  CAS  Google Scholar 

  8. Karhu M, Kuikka J, Kauppinen T, Bergström K, Vidgren M. Pulmonary deposition of lactose carriers used in inhalation powders. Int J Pharm. 2000;196(1):95–103.

    Article  PubMed  CAS  Google Scholar 

  9. Kawashima Y, Serigano T, Hino T, Yamamoto H, Takeuchi H. Effect of surface morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate. Int J Pharm. 1998;172(1–2):179–88.

    Article  CAS  Google Scholar 

  10. Ganderton D. The generation of respirable clouds from coarse powder aggregates. J Biopharm Sci. 1992;3:101–5.

    Google Scholar 

  11. Lucas P, Anderson K, Potter UJ, Staniforth JN. Enhancement of small particle size dry powder aerosol formulations using an ultra low density additive. Pharm Res. 1999;16(10):1643–7.

    Article  PubMed  CAS  Google Scholar 

  12. Lucas P, Anderson K, Staniforth JN. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm Res. 1998;15(4):562–9.

    Article  PubMed  CAS  Google Scholar 

  13. Staniforth JN. Performance-modifying influences in dry powder inhalation systems. Aerosol Sci Technol. 1995;22(4):346–53.

    Article  CAS  Google Scholar 

  14. Tee SK, Marriott C, Zeng XM, Martin GP. The use of different sugars as fine and coarse carriers for aerosolised salbutamol sulphate. Int J Pharm. 2000;208(1–2):111–23.

    Article  PubMed  CAS  Google Scholar 

  15. Byron P, Jashnani R, Germain S. Efficiency of aerosolization from dry powder blends of terbutaline sulfate and lactose NF with different particle size distribution. Pharm Res. 1990;7:S81.

    Google Scholar 

  16. Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. Influence of carrier particle size, carrier ratio and addition of fine ternary particles on the dry powder inhalation performance of insulin-loaded PLGA microcapsules. Powder Technol. 2010;201(3):289–95.

    Article  CAS  Google Scholar 

  17. Hassan MS, Lau R. Inhalation performance of pollen-shape carrier in dry powder formulation: effect of size and surface morphology. Int J Pharm. 2011;413(1–2):93–102.

    Article  PubMed  CAS  Google Scholar 

  18. Islam N, Stewart P, Larson I, Hartley P. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J Pharm Sci. 2004;93(4):1030–8.

    Article  PubMed  CAS  Google Scholar 

  19. Islam N, Stewart P, Larson I, Hartley P. Lactose surface modification by decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures? Pharm Res. 2004;21(3):492–9.

    Article  PubMed  CAS  Google Scholar 

  20. Louey MD, Razia S, Stewart PJ. Influence of physico-chemical carrier properties on the in vitro aerosol deposition from interactive mixtures. Int J Pharm. 2003;252(1–2):87–98.

    Article  PubMed  CAS  Google Scholar 

  21. Ooi J, Traini D, Hoe S, Wong W, Young PM. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems. Int J Pharm. 2011;413(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Podczeck F. The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int J Pharm. 1998;160(1):119–30.

    Article  CAS  Google Scholar 

  23. Srichana T, Martin GP, Marriott C. On the relationship between drug and carrier deposition from dry powder inhalers in vitro. Int J Pharm. 1998;167(1–2):13–23.

    Article  CAS  Google Scholar 

  24. Bell JH, Hartley PS, Cox JSG. Dry powder aerosols I: a new powder inhalation device. J Pharm Sci. 1971;60(10):1559–64.

    Article  PubMed  CAS  Google Scholar 

  25. Gilani K, Darbi M, Barghi M, Rafiee-Tehrani M. Influence of formulation variables and inhalation device on the deposition profiles of cromolyn sodium dry powder aerosols. Daru. 2004;12(3):123–30.

    CAS  Google Scholar 

  26. Kassem NM, Ho KKL, Ganderton D. The effect of air flow and carrier size on the characteristics of an inspirable cloud. J Pharm Pharmacol. 1989;41:14P.

    Google Scholar 

  27. Cline D, Dalby R. Predicting the quality of powders for inhalation from surface energy and area. Pharm Res. 2002;19(9):1274–7.

    Article  PubMed  CAS  Google Scholar 

  28. de Boer AH, Hagedoorn P, Gjaltema D, Goede J, Kussendrager KD, Frijlink HW. Air classifier technology (ACT) in dry powder inhalation Part 2. The effect of lactose carrier surface properties on the drug-to-carrier interaction in adhesive mixtures for inhalation. Int J Pharm. 2003;260(2):201–16.

    Article  PubMed  Google Scholar 

  29. Donovan MJ, Smyth HDC. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Int J Pharm. 2010;402(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  30. Byron P, Jashnani R, Germain S. Efficiency of aerosolization from dry powder blends of terbutaline sulfate and lactose NF with different particle size distribution. Pharm Res. 1980;7:S81.

    Google Scholar 

  31. Tuli RA, Dargaville TR, George GA, Islam N. Polycaprolactone microspheres as carriers for dry powder inhalers: Effect of surface coating on aerosolization of salbutamol sulfate. J Pharm Sci. 2012;101(2):733–45.

    Article  PubMed  CAS  Google Scholar 

  32. Wang S, Guo S. Disodium norcantharidate-loaded poly(ε-caprolactone) microspheres: II. Modification of morphology and release behavior. Int J Pharm. 2008;353(1–2):15–20.

    Article  PubMed  CAS  Google Scholar 

  33. Alway B, Sangchantra R, Stewart PJ. Modelling the dissolution of diazepam in lactose interactive mixtures. Int J Pharm. 1996;130(2):213–24.

    Article  CAS  Google Scholar 

  34. de Boer AH, Hagedoorn P, Gjaltema D, Goede J, Frijlink HW. Air classifier technology (ACT) in dry powder inhalation: Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures. Int J Pharm. 2003;260(2):187–200.

    Article  PubMed  Google Scholar 

  35. Voss A, Finlay WH. Deagglomeration of dry powder pharmaceutical aerosols. Int J Pharm. 2002;248(1–2):39–50.

    Article  PubMed  CAS  Google Scholar 

  36. Coates M, Chan H-K, Fletcher D, Chiou H. Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm Res. 2007;24(8):1450–6.

    Article  PubMed  CAS  Google Scholar 

  37. Coates MS, Fletcher DF, Chan H-K, Raper JA. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: grid structure and mouthpiece length. J Pharm Sci. 2004;93(11):2863–76.

    Article  PubMed  CAS  Google Scholar 

  38. Chew NYK, Chan H-K, Bagster DF, Mukhraiya J. Characterization of pharmaceutical powder inhalers: estimation of energy input for powder dispersion and effect of capsule device configuration. J Aerosol Sci. 2002;33(7):999–1008.

    Article  CAS  Google Scholar 

  39. Concessio NM, VanOort MM, Knowles MR, Hickey AJ. Pharmaceutical dry powder aerosols: correlation of powder properties with dose delivery and implications for pharmacodynamic effect. Pharm Res. 1999;16(6):828–34.

    Article  PubMed  CAS  Google Scholar 

  40. Shur J, Harris H, Jones M, Kaerger J, Price R. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations. Pharm Res. 2008;25(7):1631–40.

    Article  PubMed  CAS  Google Scholar 

  41. Traini D, Young PM, Thielmann F, Acharya M. The influence of lactose pseudopolymorphic form on salbutamol sulfate-lactose interactions in DPI formulations. Drug Dev Ind Pharm. 2008;34(9):992–1001.

    Article  PubMed  CAS  Google Scholar 

  42. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, et al. Physical characterization of component particles included in dry powder inhalers. II. Dynamic characteristics. J Pharm Sci. 2007;96(5):1302–19.

    Article  PubMed  CAS  Google Scholar 

  43. Ibrahim TH, Burk TR, Etzler FM, Neuman RD. Direct adhesion measurements of pharmaceutical particles to gelatin capsule surfaces. J Adhes Sci Technol. 2000;14(10):1225–42.

    Article  CAS  Google Scholar 

  44. Linsenbühler M, Wirth K-E. An innovative dry powder coating process in non-polar liquids producing tailor-made micro-particles. Powder Technol. 2005;158(1–3):3–20.

    Article  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

This work has been financially supported through a PhD studentship and Rinku Tuli would like to acknowledge the scholarship support provided by the Faculty of Science and Technology, Queensland University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazrul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuli, R.A., George, G.A., Dargaville, T.R. et al. Studies on the Effect of the Size of Polycaprolactone Microspheres for the Dispersion of Salbutamol Sulfate from Dry Powder Inhaler Formulations. Pharm Res 29, 2445–2455 (2012). https://doi.org/10.1007/s11095-012-0772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0772-y

Key Words

Navigation