Skip to main content

Advertisement

Log in

Preparation of Rotigotine-Loaded Microspheres and Their Combination Use with L-DOPA to Modify Dyskinesias in 6-OHDA-Lesioned Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To prepare rotigotine loaded microspheres (RoMS) to achieve continuous dopaminergic stimulation (CDS) for the treatment of Parkinson’s disease (PD) and investigate both the therapeutic benefit and inducibility of AIMs of administration of RoMS combination with L-DOPA in 6-OHDA-leisioned rats.

Methods

Rotigotine was encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres by an oil-in-water emulsion solvent evaporation technique. In vitro characteristics and in vivo pharmacokinetics of RoMS either in rat blood or brain (by microdialysis) were investigated. Contraversive rotations and AIMs were observed to investigate the therapeutic benefit and the propensity to induce dyskinesia of RoMS or RoMS combination with L-DOPA in 6-OHDA-lesioned rats.

Results

RoMS displayed continuous-release characteristics of rotigotine in animals and exhibited a steady efficacy lasted for 2 weeks in 6-OHDA-lesioned rats. No significant difference of the therapeutic benefit between the treatment of RoMS and pulsatile L-DOPA combination and mono L-DOPA was found. While the dyskinesia was significantly decreased with the treatment of RoMS and pulsatile L-DOPA combination compared to mono L-DOPA.

Conclusions

RoMS could supply an alternative of CDS for the treatment of PD and the study indicates a potential advantage of RoMS for the treatment of mild and advanced PD patient in combination with L-DOPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIMs:

abnormal involuntary movements

Apo:

apomorphine

CDS:

continuous dopaminergic stimulation

EE:

encapsulation efficiency

im:

intramuscular injection

ip:

intraperitoneal injection

L-DOPA:

levodopa

LID:

levodopa induced dyskinesias

PD:

Parkinson’s disease

PLGA:

poly(lactic-co-glycolic acid)

po:

per os

RoMS:

rotigotine loaded microspheres

REFERENCES

  1. David E, Michael P. Parkinson’s disease. http://www.merckmanuals.com/professional/neurologic_disorders/movement_and_cerebellar_disorders/parkinsons_disease.html (accessed 03/05/12)

  2. Braak H, Del TK, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  3. Jenner P. Avoidance of dyskinesia: preclinical evidence for continuous dopaminergic stimulation. Neurology. 2004;62:S47–55.

    Article  PubMed  CAS  Google Scholar 

  4. Rajput AH, Fenton ME, Birdi S, Macaulay R, George D, Rozdilsky B, et al. Clinical-pathological study of levodopa complications. Mov Disord. 2002;17:289–96.

    Article  PubMed  Google Scholar 

  5. Larramendy C, Taravini IRE, Saborido MD, Ferrario JE, Murer MG, Gershanik OS. Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res. 2008;194:44–51.

    Article  PubMed  CAS  Google Scholar 

  6. Olanow CW. The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Med. 2004;55:41–60.

    Article  PubMed  CAS  Google Scholar 

  7. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–88.

    Article  PubMed  CAS  Google Scholar 

  8. Nyholm D, Nilsson RAI, Dizdar N, Constantinescu R, Holmberg B, Jansson R, et al. Duodenal levodopa infusion monotherapy vs. oral polypharmacy in advanced Parkinson disease. Neurology. 2005;64:216–23.

    Article  PubMed  CAS  Google Scholar 

  9. Chen L, Togasaki DM, Langston JW, Di Monte DA, Quik M. Enhanced striatal opioid receptor-mediated G-protein activation in L-DOPA treated dyskinetic monkeys. Neuroscience. 2005;132:409–20.

    Article  PubMed  CAS  Google Scholar 

  10. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342:1484–91.

    Article  PubMed  CAS  Google Scholar 

  11. Nutt JG, Obeso JA, Stocchi F. Continuous dopamine-receptor stimulation in advanced Parkinson’s disease. Trends Neurosci. 2000;23:S109–15.

    Article  PubMed  CAS  Google Scholar 

  12. Olanow CW, Schapira AHV, Rascol O. Continuous dopamine-receptor stimulation in early Parkinson’s disease. Trends Neurosci. 2000;23:S117–26.

    Article  PubMed  CAS  Google Scholar 

  13. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5:677–87.

    Article  PubMed  CAS  Google Scholar 

  14. Nutt JG. Continuous dopaminergic stimulation: is it the answer to the motor complications of levodopa? Mov Disord. 2007;22:1–9.

    Article  PubMed  Google Scholar 

  15. Steiger M. Constant dopaminergic stimulation by transdermal delivery of dopaminergic drugs: a new treatment paradigm in Parkinson’s disease. Eur J Neurol. 2008;15:6–15.

    PubMed  CAS  Google Scholar 

  16. Pearce RK, Banerji T, Jenner P, Marsden CD. De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP treated marmoset. Mov Disord. 1998;13:234–41.

    Article  PubMed  CAS  Google Scholar 

  17. Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P. Both short and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than L-DOPA in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol. 2003;179:90–102.

    Article  PubMed  CAS  Google Scholar 

  18. Bibbiani F, Costantini LC, Patel R, Chase TN. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol. 2005;192:73–8.

    Article  PubMed  CAS  Google Scholar 

  19. Antonini A, Isaias IU, Canesi M, Zibetti M, Mancini F, Manfredi L, et al. Duodenal levodopa infusion for advanced Parkinson’s disease: 12-month treatment outcome. Mov Disord. 2007;22:1145–9.

    Article  PubMed  Google Scholar 

  20. Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord. 2005;20:151–7.

    Article  PubMed  Google Scholar 

  21. Sujith OK, Lane C. Review: therapeutic options for continuous dopaminergic stimulation in Parkinson’s disease. Ther Adv Neurol Disord. 2009;2:105–13.

    Article  PubMed  CAS  Google Scholar 

  22. Jenner P. A novel dopamine agonist for the transdermal treatment of Parkinson’s disease. Neurology. 2005;65:S3–5.

    Article  PubMed  CAS  Google Scholar 

  23. Rotigotine. http://en.wikipedia.org/wiki/Rotigotine (accessed 03/05/12)

  24. Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease. JAMA. 2000;284:231–8.

    Article  Google Scholar 

  25. Zhang LP. Long acting sustained-release formulation containing dopamine receptor agonist and the preparation method thereof. U.S. Publication 2008/0260846, 2008.

  26. Kehr J, Hu XJ, Yoshitake T, Scheller D. Determination of the dopamine agonist rotigotine in microdialysates from the rat brain by microbore column liquid chromatography with electrochemical detection. J Chromatogr B. 2007;845:109–13.

    Article  CAS  Google Scholar 

  27. Przedborski S, Levivier M, Jiang H. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience. 1995;67:631–47.

    Article  PubMed  CAS  Google Scholar 

  28. Truong L, Allbutt H, Kassiou M, Henderson JM. Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res. 2006;169:1–9.

    Article  PubMed  CAS  Google Scholar 

  29. Cannazza G, Di Stefano A, Mosciatti B, Braghiroli D, Baraldi M, Pinnen F, et al. Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of L-DOPA prodrugs by mean of HPLC-EC. J Pharm Biomed Anal. 2005;36:1079–84.

    Article  PubMed  CAS  Google Scholar 

  30. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioral measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15:120–32.

    Article  PubMed  CAS  Google Scholar 

  31. Stockwell KA, Virley DJ, Perren M, Iravani MM, Jackson MJ, Rose S, et al. Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets. Exp Neurol. 2008;211:172–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kehr J, Hu XJ, Goiny M, Scheller DK. Continuous delivery of rotigotine decreases extracellular dopamine suggesting continuous receptor stimulation. J Neural Transm. 2007;114:1027–31.

    Article  PubMed  CAS  Google Scholar 

  33. Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood–brain barrier-pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14:128–34.

    Article  PubMed  CAS  Google Scholar 

  34. Zubair M, Jackson MJ, Tayarani-Binazir K, Stockwell KA, Smith LA, Rose S, et al. The administration of entacapone prevents L-dopa-induced dyskinesia when added to dopamine agonist therapy in MPTP-treated primates. Exp Neurol. 2007;208:177–84.

    Article  PubMed  CAS  Google Scholar 

  35. Grace AA. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug Alcohol Depend. 1995;37:111–29.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt WJ, Lebsanft H, Heindl M, Gerlach M, Gruenblatt E, Riederer P, et al. Continuous versus pulsatile administration of rotigotine in 6-OHDA-lesioned rats: contralateral rotations and abnormal involuntary movements. J Neural Transm. 2008;115:1385–92.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by the National Basic Research Program of China (973 Program No. 2012CB724003) and Yantai University (grants YX11Z1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxin Li.

Additional information

Aiping Wang and Lexi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Wang, L., Sun, K. et al. Preparation of Rotigotine-Loaded Microspheres and Their Combination Use with L-DOPA to Modify Dyskinesias in 6-OHDA-Lesioned Rats. Pharm Res 29, 2367–2376 (2012). https://doi.org/10.1007/s11095-012-0762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0762-0

KEY WORDS

Navigation