Skip to main content

Advertisement

Log in

Selective Targeting of c-Abl via a Cryptic Mitochondrial Targeting Signal Activated by Cellular Redox Status in Leukemic and Breast Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The tyrosine kinase c-Abl localizes to the mitochondria under cell stress conditions and promotes apoptosis. However, c-Abl has not been directly targeted to the mitochondria. Fusing c-Abl to a mitochondrial translocation signal (MTS) that is activated by reactive oxygen species (ROS) will selectively target the mitochondria of cancer cells exhibiting an elevated ROS phenotype. Mitochondrially targeted c-Abl will thereby induce malignant cell death.

Methods

Confocal microscopy was used to determine mitochondrial colocalization of ectopically expressed c-Abl-EGFP/cMTS fusion across three cell lines (K562, Cos-7, and 1471.1) with varying levels of basal (and pharmacologically modulated) ROS. ROS were quantified by indicator dye assay. The functional consequences of mitochondrial c-Abl were assessed by DNA accessibility to 7-AAD using flow cytometry.

Results

The cMTS and cMTS/c-Abl fusions colocalized to the mitochondria in leukemic (K562) and breast (1471.1) cancer phenotypes (but not Cos-7 fibroblasts) in a ROS and PKC dependent manner.

Conclusions

We confirm and extend oxidative stress activated translocation of the cMTS by demonstrating that the cMTS and Abl/cMTS fusion selectively target the mitochondria of K562 leukemia and mammary adenocarcinoma 1471.1 cells. c-Abl induced K562 leukemia cell death when targeted to the matrix but not the outer membrane of the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c-Abl:

Abelson proto-oncoprotein

CML:

chronic myelogenous leukemia

cMTS:

cryptic mitochondrial translocation sequence

EGFP:

enhanced green fluorescent protein

JACoP:

Just Another Colocalization Plugin

mGSTA4-4:

murine glutathione-S-transferase A4-4

MOM:

mitochondrial outer membrane

PCC:

Pearson’s correlation coefficient

PKA:

protein kinase A

PKC:

protein kinase C

PMA:

phorbol myristate acetate

ROI:

region of interest

ROS:

reactive oxygen species

S:

serine

T:

threonine

TKI:

tyrosine kinase inhibitor

Y:

tyrosine

References

  1. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med. 2010;31(2):145–70.

    Article  PubMed  CAS  Google Scholar 

  2. Szabadkai G, Rizzuto R. Chaperones as parts of organelle networks. Adv Exp Med Biol. 2007;594:64–77.

    Article  PubMed  Google Scholar 

  3. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9(5):351–65.

    Article  PubMed  CAS  Google Scholar 

  4. Wang JY. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res. 2005;15(1):43–8.

    Article  PubMed  Google Scholar 

  5. Ito Y, Pandey P, Mishra N, Kumar S, Narula N, Kharbanda S, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol. 2001;21(18):6233–42.

    Article  PubMed  CAS  Google Scholar 

  6. Gupta M, Milani L, Hermansson M, Simonsson B, Markevarn B, Syvanen AC, et al. Expression of BCR-ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia. Biochem Biophys Res Commun. 2008;366(3):848–51.

    Article  PubMed  CAS  Google Scholar 

  7. Sirvent A, Benistant C, Roche S. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol Cell. 2008;100(11):617–31.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar S, Bharti A, Mishra NC, Raina D, Kharbanda S, Saxena S, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J Biol Chem. 2001;276(20):17281–5.

    Article  PubMed  CAS  Google Scholar 

  9. Qi X, Mochly-Rosen D. The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J Cell Sci. 2008;121(Pt 6):804–13.

    Article  PubMed  CAS  Google Scholar 

  10. Salvi M, Brunati AM, Toninello A. Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med. 2005;38(10):1267–77.

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S, Mishra N, Raina D, Saxena S, Kufe D. Abrogation of the cell death response to oxidative stress by the c-Abl tyrosine kinase inhibitor STI571. Mol Pharmacol. 2003;63(2):276–82.

    Article  PubMed  CAS  Google Scholar 

  12. Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med. 2005;38(1):2–11.

    Article  PubMed  CAS  Google Scholar 

  13. Sangar MC, Bansal S, Avadhani NG. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2010;6(10):1231–51.

    Article  PubMed  CAS  Google Scholar 

  14. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113(8):1619–30.

    Article  PubMed  CAS  Google Scholar 

  15. Robin MA, Prabu SK, Raza H, Anandatheerthavarada HK, Avadhani NG. Phosphorylation enhances mitochondrial targeting of GSTA4–4 through increased affinity for binding to cytoplasmic Hsp70. J Biol Chem. 2003;278(21):18960–70.

    Article  PubMed  CAS  Google Scholar 

  16. Raza H, Robin MA, Fang JK, Avadhani NG. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J. 2002;366(Pt1):45–55.

    PubMed  CAS  Google Scholar 

  17. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy. Antioxid Redox Signal. 2012 [Epub ahead of print].

  18. Bair JS, Palchaudhuri R, Hergenrother PJ. Chemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death. J Am Chem Soc. 2010;132(15):5469–78.

    Article  PubMed  CAS  Google Scholar 

  19. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D, et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood. 2005;105(4):1717–23.

    Article  PubMed  CAS  Google Scholar 

  20. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275(32):24273–8.

    Article  PubMed  CAS  Google Scholar 

  21. Chang SP, Shen SC, Lee WR, Yang LL, Chen YC. Imatinib mesylate induction of ROS- dependent apoptosis in melanoma B16F0 cells. J Dermatol Sci. 2011;62(3):183–91.

    Article  PubMed  CAS  Google Scholar 

  22. Brown NS, Bicknell R. Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res. 2001;3(5):323–7.

    Article  PubMed  CAS  Google Scholar 

  23. Morse-Gaudio M, Connolly JM, Rose DP. Protein kinase C and its isoforms in human breast cancer cells: relationship to the invasive phenotype. Int J Oncol. 1998;12(6):1349–54.

    PubMed  CAS  Google Scholar 

  24. Dixon AS, Kakar M, Schneider KM, Constance JE, Paullin BC, Lim CS. Controlling subcellular localization to alter function: Sending oncogenic Bcr-Abl to the nucleus causes apoptosis. J Control Release. 2009;140(3):245–9.

    Article  PubMed  CAS  Google Scholar 

  25. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. ProcNatl Acad Sci USA. 2010;107(38):16691–6.

    Article  CAS  Google Scholar 

  26. Dixon AS, Constance JE, Tanaka T, Rabbitts TH, Lim CS. Changing the Subcellular Location of the Oncoprotein Bcr-Abl Using Rationally Designed Capture Motifs. Pharm Res. 2012;29(4):1098–109.

    Article  PubMed  CAS  Google Scholar 

  27. Rasband WS. BG subtraction from ROI plugin.;2004. Available from: www.uhnres.utoronto.ca/facilities/wcif/imagej/image_intensity_proce.htm#intensity_BG.

  28. Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213–32.

    Article  PubMed  CAS  Google Scholar 

  29. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86(6):3993–4003.

    Article  PubMed  CAS  Google Scholar 

  30. Barlow AL, Macleod A, Noppen S, Sanderson J, Guerin CJ. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson’s correlation coefficient. Microsc Microanal. 2010;16(6):710–24.

    Article  PubMed  CAS  Google Scholar 

  31. Jaskolski F, Mulle C, Manzoni OJ. An automated method to quantify and visualize colocalized fluorescent signals. J Neurosci Methods. 2005;146(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  32. Dixon AS, Miller GD, Bruno BJ, Constance JE, Woessner DW, Fidler TP, et al. Improved coiled-coil design enhances interaction with bcr-abl and induces apoptosis. Mol Pharm. 2012;9(1):187–95.

    Article  PubMed  CAS  Google Scholar 

  33. Mediavilla MG, Di Venanzio GA, Guibert EE, Tiribelli C. Heterologous ferredoxin reductase and flavodoxin protect Cos-7 cells from oxidative stress. PLoS One. 2010;5(10):e13501.

    Article  PubMed  Google Scholar 

  34. Owens TW, Valentijn AJ, Upton JP, Keeble J, Zhang L, Lindsay J, et al. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ. 2009;16(11):1551–62.

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol. 2003;160(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  36. Chang SP, Shen SC, Lee WR, Yang LL, Chen YC. Imatinib mesylate induction of ROS- dependent apoptosis in melanoma B16F0 cells. J Dermatol Sci. 2011;62(3):183–91.

    Article  PubMed  CAS  Google Scholar 

  37. Ricciarelli R, Tasinato A, Clement S, Ozer NK, Boscoboinik D, Azzi A. alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. Biochem J. 1998;334(Pt 1):243–9.

    PubMed  CAS  Google Scholar 

  38. Breyer I, Azzi A. Differential inhibition by alpha- and beta-tocopherol of human erythroleukemia cell adhesion: role of integrins. Free Radic Biol Med. 2001;30(12):1381–9.

    Article  PubMed  CAS  Google Scholar 

  39. Lonne GK, Cornmark L, Zahirovic IO, Landberg G, Jirstrom K, Larsson C. PKCalpha expression is a marker for breast cancer aggressiveness. Molecular cancer. 2010;9:76.

    Article  PubMed  Google Scholar 

  40. Mitra A, Radha V. F-actin-binding domain of c-Abl regulates localized phosphorylation of C3G: role of C3G in c-Abl-mediated cell death. Oncogene. 2010;29(32):4528–42.

    Article  PubMed  CAS  Google Scholar 

  41. Mossalam M, Matissek KJ, Okal A, Constance JE, Lim CS. Direct Induction of ApoptosisUsing an Optimal Mitochondrially Targeted P53. Mol Pharm. 2012 [Epub ahead of print]

  42. Reed JC. Cancer. Priming cancer cells for death. Science. 2011;334(6059):1075–6.

    Article  PubMed  CAS  Google Scholar 

  43. Kakar M, Davis JR, Kern SE, Lim CS. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain. J Control Release. 2007;120(3):220–32.

    Article  PubMed  CAS  Google Scholar 

  44. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5(1):33–44.

    Article  PubMed  CAS  Google Scholar 

  45. Qi X, Mochly-Rosen D. The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J Cell Sci. 2008;121(Pt6):804–13.

    Article  PubMed  CAS  Google Scholar 

  46. Ito Y, Pandey P, Mishra N, Kumar S, Narula N, Kharbanda S, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol. 2001;21(18):6233–42.

    Article  PubMed  CAS  Google Scholar 

  47. Palacios G, Crawford HC, Vaseva A, Moll UM. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model. Cell Cycle. 2008;7(16):2584–90.

    Article  PubMed  CAS  Google Scholar 

  48. Schlatterer SD, Acker CM, Davies P. c-Abl in Neurodegenerative Disease. J Mol Neurosci. 2011;45(3):445–52.

    Article  PubMed  CAS  Google Scholar 

  49. Hagerkvist R, Sandler S, Mokhtari D, Welsh N. Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. Faseb J. 2007;21(2):618–28.

    Article  PubMed  Google Scholar 

  50. Biegert A, Mayer C, Remmert M, Soding J, Lupas AN. The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res. 2006;34W:335–9.

    Article  Google Scholar 

Download references

Acknowledgments & DISCLOSURES

We acknowledge the use of the University of Utah, School of Medicine, Cell Imaging Facility and would like to thank the Director, Chris Rodesch, PhD, for scientific discussions. We would also like to thank Karina Matissek, Geoffrey Miller, and Dr. Andy Dixon for scientific discussions. The Core Facilities described in this project were supported by Award Number P30CA042014 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The authors declare that they have no competing interests. This work was funded by NIH R01-CA129528 and by an AFPE Pre-Doctoral Fellowship (JEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol S. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constance, J.E., Despres, S.D., Nishida, A. et al. Selective Targeting of c-Abl via a Cryptic Mitochondrial Targeting Signal Activated by Cellular Redox Status in Leukemic and Breast Cancer Cells. Pharm Res 29, 2317–2328 (2012). https://doi.org/10.1007/s11095-012-0758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0758-9

Key Words

Navigation