Skip to main content

Advertisement

Log in

Anticancer and Immunostimulatory Activity by Conjugate of Paclitaxel and Non-toxic Derivative of LPS for Combined Chemo-immunotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Cancer is a multifactorial syndrome; hence, multidimensional therapy with a chemo-immunotherapeutic conjugate could be more effective in curing the disease.

Methods

We used SP-LPS, a bio-polymer having potent immunostimulatory activity, for conjugation with paclitaxel to make a chemo-immunotherapeutic conjugate. Its physicochemical characterization was done by HPLC, NMR and IR spectra. Stability was measured at different pH, temperature and in tissue homogenates. Chemotherapeutic and immunostimulatory activity was evaluated in vitro and also in tumor microenvironment.

Results

The conjugate self assembled into nanoparticulate structure, probably due to micelle formation. Stability was pH and temperature dependent. The conjugate exhibited chemotherapeutic and immunotherapeutic activity in vitro. In vivo antitumor activity was significantly higher and a higher percentage of activated immune cells were found in the tumor microenvironment of the conjugate-treated mice as compared to Taxol®-treated group.

Conclusions

This conjugate is a potential chemo-immunotherapeutic compound for the treatment of cancer with advantages over present day chemotherapy with Taxol in terms of higher anticancer activity, less toxicity and ease of delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Morgan G, Ward R, Barton M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin Oncol (R Coll Radiol). 2004;16:549–60.

    Article  Google Scholar 

  2. Emens LA. Chemoimmunotherapy. Cancer J. 2010;16:295–303.

    Article  PubMed  CAS  Google Scholar 

  3. Hsiao JR, Leu SF, Huang BM. Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J Oral Pathol Med. 2009;38:188–97.

    Article  PubMed  CAS  Google Scholar 

  4. Szebeni J, Muggia FM, Alving CR. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst. 1998;90:300–6.

    Article  PubMed  CAS  Google Scholar 

  5. Kan P, Chen ZB, Lee CJ, Chu IM. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J Control Release. 1999;58:271–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sharma A, Straubinger RM. Novel taxol formulations: preparation and characterization of taxol-containing liposomes. Pharm Res. 1994;11:889–96.

    Article  PubMed  CAS  Google Scholar 

  7. Liggins RT, Burt HM. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev. 2002;54:191–202.

    Article  PubMed  CAS  Google Scholar 

  8. Feng SS, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem. 2004;11:413–24.

    Article  PubMed  CAS  Google Scholar 

  9. Deutsch HM, Glinski JA, Hernandez M, Haugwitz RD, Narayanan VL, Suffness M, Zalkow LH. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity. J Med Chem. 1989;32:788–92.

    Article  PubMed  CAS  Google Scholar 

  10. Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2′-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem. 1996;39:424–31.

    Article  PubMed  CAS  Google Scholar 

  11. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58:2404–9.

    PubMed  CAS  Google Scholar 

  12. Dosio F, Brusa P, Crosasso P, Arpicco S, Cattel L. Preparation, characterization and properties in vitro and in vivo of a paclitaxel-albumin conjugate. J Control Release. 1997;47:293–304.

    Article  CAS  Google Scholar 

  13. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  CAS  Google Scholar 

  14. Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: a nanoparticle based approach. Mol Pharmaceutics. 2010;7:1778–88.

    Article  CAS  Google Scholar 

  15. Ailawadhi S, Sunga A, Rajput A, Yang GY, Smith J, Fakih M. Chemotherapy-induced carcinoembryonic antigen surge in patients with metastatic colorectal cancer. Oncology. 2006;70:49–53.

    Article  PubMed  CAS  Google Scholar 

  16. Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F. Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother. 2008;57:1579–87.

    Article  PubMed  CAS  Google Scholar 

  17. Jassar AS, Suzuki E, Kapoor V, Sun J, Silverberg MB, Cheung L, Burdick MD, Strieter RM, Ching LM, Kaiser LR, Albelda SM. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res. 2005;65:11752–61.

    Article  PubMed  CAS  Google Scholar 

  18. Shinohara H, Yano S, Bucana CD, Fidler IJ. Induction of chemokine secretion and enhancement of contact-dependent macrophage cytotoxicity by engineered expression of granulocyte-macrophage colony-stimulating factor in human colon cancer cells. J Immunol. 2000;164:2728–37.

    PubMed  CAS  Google Scholar 

  19. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    Article  PubMed  CAS  Google Scholar 

  20. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  PubMed  CAS  Google Scholar 

  21. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  PubMed  CAS  Google Scholar 

  22. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  PubMed  CAS  Google Scholar 

  23. Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, Chiavaroli C. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol. 2007;563:1–17.

    Article  PubMed  CAS  Google Scholar 

  24. McIntire FC, Hargie MP, Schenck JR, Finley RA, Sievert HW, Rietschel ET, Rosenstreich DL. Biologic properties of nontoxic derivatives of a lipopolysaccharide from Escherichia coli K235. J Immunol. 1976;117:674–8.

    PubMed  CAS  Google Scholar 

  25. McIntire FC, Sievert HW, Barlow GH, Finley RA, Lee AY. Chemical, physical, biological properties of a lipopolysaccharide from Escherichia coli K-235. Biochemistry. 1967;6:2363–72.

    Article  PubMed  CAS  Google Scholar 

  26. Schenck JR, Hargie MP, Brown MS, Ebert DS, Yoo AL, McIntire FC. The enhancement of antibody formation by Escherichia coli lipopolysaccharide and detoxified derivatives. J Immunol. 1969;102:1411–22.

    PubMed  CAS  Google Scholar 

  27. Shah S, Raghupathy R, Singh O, Talwar GP, Sodhi A. Prior immunity to a carrier enhances antibody responses to hCG in recipients of an hCG-carrier conjugate vaccine. Vaccine. 1999;17:3116–23.

    Article  PubMed  CAS  Google Scholar 

  28. Neises B, Steglich W. Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl. 1978;17:522–4.

    Article  Google Scholar 

  29. Chen JZ, Ranade SV, Xie XQ. NMR characterization of paclitaxel/poly (styrene-isobutylene-styrene) formulations. Int J Pharm. 2005;305:129–44.

    Article  PubMed  CAS  Google Scholar 

  30. Renuga Devi TS, Gayathri S. FTIR And FT-Raman spectral analysis of Paclitaxel drugs. International Journal of Pharmaceutical Sciences Review and Research. 2010;2:106–10.

    CAS  Google Scholar 

  31. Kooter IM, Pierik AJ, Merkx M, Averill BA, Moguilevsky N, Bollen A, Wever R. Difference fourier transform infrared evidence for ester bonds linking the heme group in myeloperoxidase, lactoperoxidase, and eosinophil peroxidase. J Am Chem Soc. 1997;119:11542–3.

    Article  CAS  Google Scholar 

  32. Dordunoo SK, Burt HM. Solubility and stability of taxol: effects of buffers and cyclodextrins. Int J Pharm. 1996;133:191–201.

    Article  CAS  Google Scholar 

  33. MacEachern-Keith GJ, Wagner Butterfield LJ, Incorvia Mattina MJ. Paclitaxel stability in solution. Anal Chem. 1997;69:72–7.

    Article  CAS  Google Scholar 

  34. Li X, Yu J, Xu S, Wang N, Yang H, Yan Z, Cheng G, Liu G. Chemical conjugation of muramyl dipeptide and paclitaxel to explore the combination of immunotherapy and chemotherapy for cancer. Glycoconj J. 2008;25:415–25.

    Article  PubMed  CAS  Google Scholar 

  35. Eralp Y, Wang X, Wang JP, Maughan MF, Polo JM, Lachman LB. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model. Breast Cancer Res. 2004;6:R275–83.

    Article  PubMed  CAS  Google Scholar 

  36. Zhong H, Han B, Tourkova IL, Lokshin A, Rosenbloom A, Shurin MR, Shurin GV. Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res. 2007;13:5455–62.

    Article  PubMed  CAS  Google Scholar 

  37. Kingston DG. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 1994;12:222–7.

    Article  PubMed  CAS  Google Scholar 

  38. Rosler A, Vandermeulen GW, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2001;53:95–108.

    Article  PubMed  CAS  Google Scholar 

  39. Xin D, Wang Y, Xiang J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res. 2010;27:380–9.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Xin D, Liu K, Zhu M, Xiang J. Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem. 2009;20:2214–21.

    Article  PubMed  CAS  Google Scholar 

  41. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R, Costantini D, Couvreur P. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108–18.

    Article  PubMed  CAS  Google Scholar 

  42. Manthey CL, Brandes ME, Perera PY, Vogel SN. Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J Immunol. 1992;149:2459–65.

    PubMed  CAS  Google Scholar 

  43. Ma Y, Zhao N, Liu G. Conjugate (MTC-220) of muramyl dipeptide analogue and paclitaxel prevents both tumor growth and metastasis in mice. J Med Chem. 2011;54:2767–77.

    Article  PubMed  CAS  Google Scholar 

  44. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205:1261–8.

    Article  PubMed  CAS  Google Scholar 

  45. Pardoll D. T cells take aim at cancer. Proc Natl Acad Sci U S A. 2002;99:15840–2.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by the NII core grant. We sincerely thank Dr. Monica Sund for helping in the NMR studies. We are also thankful to the Advanced Instrumentation Research Facility of Jawaharlal Nehru University, New Delhi for the IR studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pramod Upadhyay or Sangeeta Bhaskar.

Electronic Supplementary Material

HPLC elution profile of PLC, PTX and PTX succinate (Supplementary Fig. 1) and body weight and tissue histology of treated animals for toxicity study (Supplementary Fig. 2) are included in the Supporting Information.

Supplementary Figure 1

HPLC elution profile of PTX, PTX succinate and PLC. All of the compounds were dissolved in DMSO and run in Shimadzu UFLP HPLC system. The mobile phase consisted of 60:40 (v/v), acetonitrile : water and delivered at a flow rate of 1.0 mL/minute. The reverse phase column used was Phenomenex RPC18 column (300 × 5 mm, pore size 5 μm). Detection was done at 228 nm. No overlapping peak of either PTX or PTX succinate in the PLC indicated purity of the conjugate. Short elution time of PLC also suggested polar nature compared to both PTX and PTX succinate. (JPEG 9181 kb)

Supplementary Figure 2

Toxicity study of the conjugate. Mice were intravenously administered with 400 μg/animal dose of PTX delivered either as the commercial formulation, Taxol or PLC. One set of mice were monitored for 14 days and regular checkup of body weight was done. Some animals were sacrificed after 48 h of injection and histopathological study was done on different organs. A. Comparison of body weight of PLC treated and Taxol treated mice with saline treated mice (control). B. Histopathological examination of different organs of PLC treated and Taxol treated mice compared to saline treated mice. No toxic manifestation was found in the PLC treated animals with respect to both body weight and tissue histology. (JPEG 5497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A., Chandra, S., Mamilapally, S. et al. Anticancer and Immunostimulatory Activity by Conjugate of Paclitaxel and Non-toxic Derivative of LPS for Combined Chemo-immunotherapy. Pharm Res 29, 2294–2309 (2012). https://doi.org/10.1007/s11095-012-0756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0756-y

KEY WORDS

Navigation