Skip to main content
Log in

Controlled Nucleation of Lipid Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

We describe a nucleation-based method which allows for the generation of monodisperse lipid nanoparticles over a range of diameters. Using a set of novel zwitterionic lipids and inverse phosphocholine lipids with pKas ranging from 2 to 5, we showed how the hydrodynamic diameter of lipid nanoparticles can be systematically manipulated over a 60 nm to 500 nm size range.

Method

Lipid nanoparticles were prepared by adding an anti-solvent, such as water, to the organic phase containing the lipid components. This led to super-saturation and the spontaneous formation of particles.

Results

The growth and final particle size was controlled by the ratio of the components in the ternary system: lipid, organic solvent and aqueous phase. Particles with diameter below 125 nm were formed under conditions where the super-saturation coefficient was between 2.3 and 20. PEG-lipid served as an efficient growth inhibitor except at very high and low lipid concentrations. Encapsulation efficiency of siRNA into lipid nanoparticles was shown to be pH-dependent and requires the protonation of the anionic carboxylate groups of the zwitterionic lipids, emphasizing the importance of electrostatic forces.

Conclusion

This process enables high encapsulation efficiency of nucleic acids and allows the size of lipid nanoparticles to be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Nguyen J, Szoka FC. Nucleic acid delivery: the missing pieces of the puzzle? Accounts of Chemical Research. 2012.

  2. Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther. 2009;17(5):872–9.

    Article  PubMed  CAS  Google Scholar 

  3. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6.

    Article  PubMed  CAS  Google Scholar 

  4. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  5. Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev. 1999;40(1–2):75–87.

    Article  PubMed  CAS  Google Scholar 

  6. Li W, Szoka Jr FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24(3):438–49.

    Article  PubMed  Google Scholar 

  7. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15(17):1193–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hirota S, de Ilarduya CT, Barron LG, Szoka Jr FC. Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). Biotechniques. 1999;27(2):286–90.

    PubMed  CAS  Google Scholar 

  9. Semple SC, Klimuk SK, Harasym TO, Dos Santos N, Ansell SM, Wong KF, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta. 2001;1510(1–2):152–66.

    PubMed  CAS  Google Scholar 

  10. Jeffs LB, Palmer LR, Ambegia EG, Giesbrecht C, Ewanick S, MacLachlan I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res. 2005;22(3):362–72.

    Article  PubMed  CAS  Google Scholar 

  11. D’Addio SM, Prud’homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev. 2011;63(6):417–26.

    Article  PubMed  Google Scholar 

  12. Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed Engl. 2001;40(23):4330–61.

    Article  PubMed  CAS  Google Scholar 

  13. Mahajan A, Kirwan D. Nucleation and growth-kinetics of biochemicals measured at high supersaturations. J Chryst Growth. 1994;144:281–90.

    Article  CAS  Google Scholar 

  14. Walsh CL, Nguyen J, Szoka FC. Synthesis and characterization of novel zwitterionic lipids with pH-responsive biophysical properties. Chem Commun, in press.

  15. Perttu EK, Kohli AG, Szoka FC. Inverse-phosphocholine lipids: a remix of a common phospholipid. J Am Chem Soc. 2012;134(10):4485–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar VV. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci U S A. 1991;88(2):444–8.

    Article  PubMed  CAS  Google Scholar 

  17. Shew RL, Deamer DW. A novel method for encapsulation of macromolecules in liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1985;816(1):1–8.

    Article  CAS  Google Scholar 

  18. Szoka Jr F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75(9):4194–8.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang N, Tan C, Cai P, Jiang Y, Zhang P, Zhao Y. Synthesis and properties of morpholino chimeric oligonucleotides. Tetrahedon Lett. 2008;49(22):3570–3.

    Article  CAS  Google Scholar 

  20. Schmid P, Hunter E. Extraction and purification of lipids. I. Solubility of lipids in biologically important solvents. Physiol Chem Phys. 1971;3:98–102.

    CAS  Google Scholar 

  21. Aubry J, Ganachaud F, Cohen Addad JP, Cabane B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir. 2009;25(4):1970–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bar LK, Garti N, Sarig S, Bar R. Solubilities of cholesterol, sitosterol, and cholesteryl acetate in polar organic solvents. J Chem Eng Data. 1984;29(4):440–3.

    Article  CAS  Google Scholar 

  23. Chen T, D’Addio SM, Kennedy MT, Swietlow A, Kevrekidis IG, Panagiotopoulos AZ, et al. Protected peptide nanoparticles: experiments and brownian dynamics simulations of the energetics of assembly. Nano Lett. 2009;9(6):2218–22.

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Kathan K, Saad W, Prud’homme RK. Ostwald ripening of beta-carotene nanoparticles. Phys Rev Lett. 2007;98(3):036102.

    Article  PubMed  Google Scholar 

  25. Cao G. Nanostructures & nanomaterials: synthesis, properties & applications. 2004.

  26. Lasic DD, Ceh B, Stuart MC, Guo L, Frederik PM, Barenholz Y. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta. 1995;1239(2):145–56.

    Article  PubMed  Google Scholar 

  27. Guo X, Szoka Jr FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG–diortho ester–lipid conjugate. Bioconjug Chem. 2001;12(2):291–300.

    Article  PubMed  CAS  Google Scholar 

  28. Holland JW, Hui C, Cullis PR, Madden TD. Poly(ethylene glycol)–lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry. 1996;35(8):2618–24.

    Article  PubMed  CAS  Google Scholar 

  29. Guida V. Thermodynamics and kinetics of vesicles formation processes. Adv Colloid Interface Sci. 2010;161(1–2):77–88.

    Article  PubMed  CAS  Google Scholar 

  30. Lasic DD, Joannic R, Keller BC, Frederik PM, Auvray L. Spontaneous vesiculation. Adv Colloid Interface Sci. 2001;89–90:337–49.

    Article  PubMed  Google Scholar 

  31. DeMello AJ. Control and detection of chemical reactions in microfluidic systems. Nature. 2006;442(7101):394–402.

    Article  PubMed  CAS  Google Scholar 

  32. Huang X, Caddell R, Yu B, Xu S, Theobald B, Lee LJ, et al. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res. 2010;30(2):463–6.

    PubMed  CAS  Google Scholar 

  33. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano. 2010;4(4):2077–87.

    Article  PubMed  CAS  Google Scholar 

  34. Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir. 2007;23(11):6289–93.

    Article  PubMed  CAS  Google Scholar 

  35. Jahn A, Vreeland WN, Gaitan M, Locascio LE. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc. 2004;126(9):2674–5.

    Article  PubMed  CAS  Google Scholar 

  36. Mengeaud V, Josserand J, Girault HH. Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem. 2002;74(16):4279–86.

    Article  PubMed  CAS  Google Scholar 

  37. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science. 2002;295(5555):647–51.

    Article  PubMed  CAS  Google Scholar 

  38. Valencia PM, Basto PA, Zhang L, Rhee M, Langer R, Farokhzad OC, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4(3):1671–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We are grateful for the financial support from the NIH (2R01EB003008-08) and Pfizer QB3. Juliane Nguyen is supported by the postdoctoral research fellowship from the Deutsche Forschungsgemeinschaft (DFG). Colin Walsh and Emily Perttu are supported by the NSF pre-doctoral fellowship. Michael Motion is supported by a fellowship of the NIH NIGMS. We acknowledge Charles Noble and Mark Hayes for their technical help with the HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Szoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, J., Walsh, C.L., Motion, J.P.M. et al. Controlled Nucleation of Lipid Nanoparticles. Pharm Res 29, 2236–2248 (2012). https://doi.org/10.1007/s11095-012-0752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0752-2

KEY WORDS

Navigation