Skip to main content

Advertisement

Log in

Bioreducible Crosslinked Polyelectrolyte Complexes for MMP-2 siRNA Delivery into Human Vascular Smooth Muscle Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Bioreducible crosslinked polyplexes were prepared via disulfide bond formation after siRNA condensation with polyethylenimine-modified by deoxycholic acid (PEI-DA) to stabilize polyplex structure in an extracellular environment and to promote transfection efficiency in human smooth muscle cells (hSMCs).

Methods

The PEI-DA/siRNA polyplexes were further modified by crosslinking the primary amines of PEI with thiol-cleavable crosslinkers. The effect of disulfide crosslinked PEI-DA/siRNA (Cr PEI-DA/siRNA) polyplexes on target gene silencing was investigated by transfecting hSMCs with matrix metalloproteinase-2 (MMP-2) siRNA under serum conditions. The MMP-2 levels in the conditioned medium were examined using gelatin zymography.

Results

The Cr PEI-DA/siRNA polyplexes showed increased stability against heparin exchange reactions, while their disulfide linkages were successfully cleaved under reducing conditions. The polyplex crosslinking reaction led to a slight decrease in MMP-2 gene silencing activity in hSMCs due to the insufficient redox potential. However, the gene silencing efficiency of the Cr PEI-DA/siRNA polypexes was gradually improved in response to increasing intracellular reduction potential. The increased serum stability of the Cr PEI-DA/siRNA polyplexes resulted in significant enhancement of the intracellular delivery efficiency especially under serum conditions.

Conclusion

The Cr PEI-DA/siRNA polyplex formulation may be a promising siRNA delivery system for the treatment of incurable genetic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3:737–47.

    Article  PubMed  CAS  Google Scholar 

  2. Jeong JH, Park TG, Kim SH. Self-assembled and nanostructured siRNA delivery systems. Pharm Res. 2011;28:2072–85.

    Article  PubMed  CAS  Google Scholar 

  3. Castanotto D, Rossi JJ. The promises and pitfalls of RNA interference-based therapeutics. Nature. 2009;457:426–33.

    Article  PubMed  CAS  Google Scholar 

  4. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  PubMed  CAS  Google Scholar 

  5. Gao X, Kim K-S, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J. 2007;23:E92–E104.

    Article  Google Scholar 

  6. Park KH, Yun CO, Kwon OJ, Kim CH, Kim JR, Cho KH. Enhacned deliery of adenovirus, using proteoliposomes containing wildtype or V156K apolipoprotein A-1 and dimyristoylphosphatidylcholine. Hum Gene Ther. 2010;21:597–87.

    CAS  Google Scholar 

  7. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release. 2006;116:123–9.

    Article  PubMed  CAS  Google Scholar 

  8. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconjugate Chem. 2006;17:1209–18.

    Article  CAS  Google Scholar 

  9. Christie RJ, Nishiyama N, Kataoka K. Minireview: delivering the code: polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies. Endocrinology. 2010;15:466–73.

    Article  Google Scholar 

  10. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45.

    Article  PubMed  CAS  Google Scholar 

  11. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. PEG local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release. 2008;129:107–16.

    Article  PubMed  CAS  Google Scholar 

  12. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polyer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  PubMed  CAS  Google Scholar 

  13. Oupicky D, Parker AL, Seymour LW. Laterally stabilized compleses of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J Am Chem Soc. 2002;124:8–9.

    Article  PubMed  CAS  Google Scholar 

  14. Neu M, Sitterberg J, Bakowsky U, Kissel T. Stabilized nanocarriers for plasmids based upon cross-linked poly(ethylene imine). Biomacromolecules. 2006;7:3428–38.

    Article  PubMed  CAS  Google Scholar 

  15. Fischer D, Bieber T, Li Y, Elsässer H, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  PubMed  CAS  Google Scholar 

  16. Chae SY, Kim HJ, Lee MS, Jang YL, Lee Y, Lee SH, et al. Energy-independent intracellular gene delivery mediated by polymeric biomimetics of cell-penetrating peptides. Macromol Biosci. 2011;11:1169–74.

    Article  PubMed  CAS  Google Scholar 

  17. Mikov M, Fawcett JP, Kuhajda K, Kevresan S. Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents. Eur J Drug Metabol Pharmacokinet. 2006;31:237–51.

    Article  CAS  Google Scholar 

  18. Ferreira LF, Gilliam LAA, Reid MB. L-2-Oxothiazolidine-4-carboxylate reverses glutathione oxidation and delays fatigue of skeletal muscle in vitro. J Appl Physiol. 2009;107:211–6.

    Article  PubMed  CAS  Google Scholar 

  19. Babu E, Ananth S, Veerrannan-Karmegam R, Coothankandaswamy V, Smith SB, Boettger T, et al. Transport via SLC5A8 (SMCT1) is obligatory for 2-oxothiazolidine-4-carboxylate to enhance glutathione production in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2011;52:5749–57.

    Article  PubMed  CAS  Google Scholar 

  20. Kim D, Lee D, Jang YL, Chae SY, Choi D, Jeong JH, et al. Facial amphipathic deoxycholic acid-modified polyethyleneimine for efficient MMP-2 siRNA delivery in vascular smooth muscle cells. Eur J Pharm Biopharm. 2012, doi:10.1016/j.ejpb.2012.01.013.

  21. Mok H, Lee SH, Park JW, Park TG. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater. 2010;9:272–8.

    PubMed  CAS  Google Scholar 

  22. Kim SH, Jeong JH, Kim T, Kim SW, Bull DA. VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol Pharm. 2009;6:718–26.

    Article  PubMed  CAS  Google Scholar 

  23. Wang W, Ballatori N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev. 1998;50:335–56.

    PubMed  CAS  Google Scholar 

  24. Bauhuber S, Hozsa C, Breunig M, Gopferich A. Delivery of nucleic acids via disulfide-based carrrier systems. Adv Mater. 2009;21:3286–306.

    Article  PubMed  CAS  Google Scholar 

  25. Kish PE, Tsume Y, Kijek P, Lanigan TM, Hilfinger JM, Roessler BJ. Bile acid-oligopeptide conjugates interact with DNA and facilitate transfection. Mol Pharm. 2007;4:95–103.

    Article  PubMed  CAS  Google Scholar 

  26. Katsaros KM, Kastl SP, Zorn G, Maurer G, Wojta J, Huber K, et al. Increased restenosis rate after implantation of drug-eluting stents in patients with elevated serum activity of matrix metalloproteinase-2 and -9. JACC Cardiovasc Interv. 2010;3:90–7.

    Article  PubMed  Google Scholar 

  27. Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation. 2003;108:1375–81.

    Article  PubMed  CAS  Google Scholar 

  28. Giorgi G, Micheli L, Fiaschi AI, Cerretani D, Romeo R, Dal Pra P, et al. L-2-oxothiazolidine-4-carboxylic acid and glutathione in human immunodeficiency virus. Curr Ther Res. 1992;52:461–7.

    Article  CAS  Google Scholar 

  29. Williamson JM, Boettcher B, Meister A. Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc Natl Acad Sci USA. 1982;79:6246–9.

    Article  PubMed  CAS  Google Scholar 

  30. Paula DD, Bentley MVLB, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA. 2007;13:431–56.

    Article  PubMed  Google Scholar 

  31. Oupicky D, Carlisle RC, Seymour LW. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 2001;8:713–24.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by a grant from the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A110879).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghoon Choi or Sun Hwa Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Kim, D., Mok, H. et al. Bioreducible Crosslinked Polyelectrolyte Complexes for MMP-2 siRNA Delivery into Human Vascular Smooth Muscle Cells. Pharm Res 29, 2213–2224 (2012). https://doi.org/10.1007/s11095-012-0750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0750-4

KEY WORDS

Navigation