Skip to main content

Advertisement

Log in

Galactose Decorated Acid-Labile Nanoparticles Encapsulating Quantum Dots for Enhanced Cellular Uptake and Subcellular Localization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Biodegradable polymers containing acid-labile segments and galactose grafts were formulated into nanoparticles in current study, and enhanced cellular uptake and subcellular distribution were clarified.

Methods

Quantum dots (QDs) was utilized as an imaging agent and a model of bioactive substances, and entrapped into nanoparticles of around 200 nm through a nanoprecipitation process.

Results

The acid-labile characteristics of QDs-loaded nanoparticles were approved by the hemolysis capability, the degradation behaviors of matrix polymers, and the fluorescence decay of entrapped QDs after incubation into buffer solutions of different pH values. The galactose grafts increased the acid-lability, due to the hydrophilic moieties on the acid-labile segments, and enhanced uptake efficiency of over 50 % was found after 4 h incubation with HepG2 cells, due to the galactose-receptor mediated endocytosis. The acid-lability led to an efficient endosomal escape of QDs-loaded nanoparticles into cytoplasm.

Conclusions

The integration of acid-lability, targeting effect, and full biodegradable backbone into nanoparticle matrices constitutes a promising platform for intracellular delivery of bioactive substances for disease diagnosis, imaging and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003;92:203–17.

    Article  PubMed  CAS  Google Scholar 

  2. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.

    Article  PubMed  CAS  Google Scholar 

  3. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem. 2003;14:412–9.

    Article  PubMed  CAS  Google Scholar 

  4. Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999;59:1180–3.

    PubMed  CAS  Google Scholar 

  5. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.

    Article  PubMed  CAS  Google Scholar 

  6. Ding CX, Gu JX, Qu XZ, Yang ZZ. Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker. Bioconjug Chem. 2009;20:1163–70.

    Article  PubMed  CAS  Google Scholar 

  7. Lo CL, Huang CK, Lin KM, Hsiue GH. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials. 2007;28:1225–35.

    Article  PubMed  CAS  Google Scholar 

  8. Garripelli VK, Kim JK, Namgung R, Kim WJ, Repka MA, Jo S. A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomater. 2010;6:477–85.

    Article  PubMed  CAS  Google Scholar 

  9. Guo X, Szoka FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug Chem. 2001;12:291–300.

    Article  PubMed  CAS  Google Scholar 

  10. Chen Z, Cai XJ, Yang Y, Wu GN, Liu YW, Chen F, et al. Promoted transfection efficiency of pDNA polyplexes-loaded biodegradable microparticles containing acid-labile segments and galactose grafts. Pharm Res. 2012;29:471–82.

    Article  PubMed  CAS  Google Scholar 

  11. Goto Y, Matsuno R, Konno T, Takai M, Ishihara K. Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromolecules. 2008;9:3252–7.

    Article  PubMed  CAS  Google Scholar 

  12. Su YY, Hu M, Fan CH, He Y, Li QN, Li WX, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials. 2010;31:4829–34.

    Article  PubMed  CAS  Google Scholar 

  13. Delehanty JB, Mattoussi H, Medintz IL. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem. 2009;393:1091–105.

    Article  PubMed  CAS  Google Scholar 

  14. Pan J, Feng SS. Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs) loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30:1176–83.

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Shih WH, Shih WY, Chen LY, Tseng SJ, Tang SC. Transfection of aqueous CdS quantum dots using polyethylenimine. Nanotechnology. 2008;19:475101–8.

    Article  PubMed  Google Scholar 

  16. Cui WG, Qi MB, Li XH, Huang SZ, Zhou SB, Weng J. Electrospun fbers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm. 2008;361:47–55.

    Article  PubMed  CAS  Google Scholar 

  17. Deng XM, Li XH, Yuan ML, Xiong CD, Huang ZT, Jia WX, et al. Optimization of preparative parameters for poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped Vibrio cholera antigens. J Control Release. 1999;58:123–31.

    Article  PubMed  CAS  Google Scholar 

  18. Yu G, Li XH, Cai XJ, Cui WG, Zhou SB, Weng J. The photoluminescence enhancement of electrospun poly (ethylene oxide) fibers with CdS and polyaniline inoculations. Acta Mater. 2008;56:5775–82.

    Article  CAS  Google Scholar 

  19. Guo GN, Liu W, Liang JG, Xu HB, He ZK, Yang XL. Preparation and characterization of novel CdSe quantum dots modified with poly(D, L-lactide) nanoparticles. Mater Lett. 2006;60:2565–8.

    Article  CAS  Google Scholar 

  20. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.

    Article  PubMed  CAS  Google Scholar 

  21. Setua S, Menon D, Asok A, Nair S, Koyakutty M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials. 2010;31:714–29.

    Article  PubMed  CAS  Google Scholar 

  22. Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135:259–67.

    Article  PubMed  CAS  Google Scholar 

  23. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–6.

    Article  PubMed  CAS  Google Scholar 

  24. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999;57:259–68.

    Article  PubMed  CAS  Google Scholar 

  25. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®). J Control Release. 2002;80:129–44.

    Article  PubMed  CAS  Google Scholar 

  26. Ramsden JJ, Webber SE, Graetzel M. Luminescence of colloidal cadmium sulfide particles in acetonitrile and acetonitrile/water mixtures. J Phys Chem. 1985;89:2740–3.

    Article  CAS  Google Scholar 

  27. Guo GN, Liu W, Liang JG, He ZK, Xu HB, Yang XL. Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett. 2007;61:1641–4.

    Article  CAS  Google Scholar 

  28. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100:13226–39.

    Article  CAS  Google Scholar 

  29. Hezinger AFE, Teßmar J, Gopferich A. Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm. 2008;68:138–52.

    Article  PubMed  CAS  Google Scholar 

  30. Li MJ, Zhang JH, Zhang H, Liu YF, Wang CL, Xu X, et al. Electrospinning: a facile method to disperse fluorescent quantum dots in nanofibers without Forster resonance energy transfer. Adv Funct Mater. 2007;17:3650–6.

    Article  Google Scholar 

  31. Fan CH, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ. Beyond superquenching hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci USA. 2003;100:6297–301.

    Article  PubMed  CAS  Google Scholar 

  32. Yordanov G, Simeonova M, Alexandrova R, Yoshimura H, Dushkin C. Quantum dots tagged poly(alkycyanoacrylate) nanoparticles intended for bioimaging applications. Colloids Surf A. 2009;339:199–205.

    Article  CAS  Google Scholar 

  33. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus like gene transfer systems. J Biol Chem. 1994;269:12918–24.

    PubMed  CAS  Google Scholar 

  34. Lee RJ, Wang SS, Low PS. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta. 1996;1312:237–42.

    Article  PubMed  Google Scholar 

  35. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J Control Release. 2003;89:365–74.

    Article  PubMed  CAS  Google Scholar 

  36. Tosteson MT, Holmes SJ, Razin M, Tosteson DC. Melittin lysis of red blood cells. J Membr Biol. 1985;87:35–44.

    Article  PubMed  CAS  Google Scholar 

  37. Fan TWM, Teh SJ, Hinton DE, Higashi RM. Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat Toxicol. 2002;57:65–84.

    Article  PubMed  CAS  Google Scholar 

  38. Popielarski SR, Hu-Lieskovan S, French SW, Triche TJ, Davis ME. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjugate Chem. 2005;16:1071–80.

    Article  CAS  Google Scholar 

  39. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polymethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2004;7:657–63.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by National Natural Science Foundation of China (30570501, 20774075, and 51073130), and Fundamental Research Funds for the Central Universities (SWJTU11CX126 and SWJTU11ZT10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Li or Zhongwei Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Li, X., Liu, Y. et al. Galactose Decorated Acid-Labile Nanoparticles Encapsulating Quantum Dots for Enhanced Cellular Uptake and Subcellular Localization. Pharm Res 29, 2167–2179 (2012). https://doi.org/10.1007/s11095-012-0745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0745-1

KEY WORDS

Navigation