Skip to main content
Log in

Combining Cheminformatics Methods and Pathway Analysis to Identify Molecules with Whole-Cell Activity Against Mycobacterium Tuberculosis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

New strategies for developing inhibitors of Mycobacterium tuberculosis (Mtb) are required in order to identify the next generation of tuberculosis (TB) drugs. Our approach leverages the integration of intensive data mining and curation and computational approaches, including cheminformatics combined with bioinformatics, to suggest biological targets and their small molecule modulators.

Methods

We now describe an approach that uses the TBCyc pathway and genome database, the Collaborative Drug Discovery database of molecules with activity against Mtb and their associated targets, a 3D pharmacophore approach and Bayesian models of TB activity in order to select pathways and metabolites and ultimately prioritize molecules that may be acting as substrate mimics and exhibit activity against TB.

Results

In this study we combined the TB cheminformatics and pathways databases that enabled us to computationally search >80,000 vendor available molecules and ultimately test 23 compounds in vitro that resulted in two compounds (N-(2-furylmethyl)-N′-[(5-nitro-3-thienyl)carbonyl]thiourea and N-[(5-nitro-3-thienyl)carbonyl]-N′-(2-thienylmethyl)thiourea) proposed as mimics of D-fructose 1,6 bisphosphate, (MIC of 20 and 40 μg/ml, respectively).

Conclusion

This is a simple yet novel approach that has the potential to identify inhibitors of bacterial growth as illustrated by compounds identified in this study that have activity against Mtb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balganesh TS, Alzari PM, Cole ST. Rising standards for tuberculosis drug development. Trends Pharmacol Sci. 2008;29:576–81.

    Article  PubMed  CAS  Google Scholar 

  2. Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 1999;452:7–10.

    Article  PubMed  CAS  Google Scholar 

  3. Weiand JR, Rubin EJ. The many roads to essential genes. Tuberculosis (Edinburgh, Scotland). 2008;88 Suppl 1:S19–24.

    Google Scholar 

  4. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34:257–67.

    Article  PubMed  CAS  Google Scholar 

  5. Wayneand LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64:2062–9.

    Google Scholar 

  6. Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA, Alvarez X, Ratterree M, Be NA, Lamichhane G, Jain SK, Lacey MR, Lackner AA, Kaushal D. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis. 2010;201:1743–52.

    Article  PubMed  CAS  Google Scholar 

  7. Ostermanand AL, Begley TP. A subsystems-based approach to the identification of drug targets in bacterial pathogens. Prog Drug Res. 2007;64(131):133–70.

    Google Scholar 

  8. Moir DT, Shaw KJ, Hare RS, Vovis GF. Genomics and antimicrobial drug discovery. Antimicrob Agents Chemother. 1999;43:439–46.

    PubMed  CAS  Google Scholar 

  9. Sacchettini JC, Rubin EJ, Freundlich JS. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol. 2008;6:41–52.

    Article  PubMed  CAS  Google Scholar 

  10. Ballel L, Field RA, Duncan K, Young RJ. New small-molecule synthetic antimycobacterials. Antimicrob Agents Chemother. 2005;49:2153–63.

    Article  Google Scholar 

  11. Payne DA, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Disc. 2007;6:29–40.

    Article  CAS  Google Scholar 

  12. Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov. 2010;9:273–6.

    Article  PubMed  CAS  Google Scholar 

  13. Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol. 2011;19:65–74.

    Article  PubMed  CAS  Google Scholar 

  14. Adams JC, Keiser MJ, Basuino L, Chambers HF, Lee DS, Wiest OG, Babbitt PC. A mapping of drug space from the viewpoint of small molecule metabolism. PLoS Comput Biol. 2009;5:e1000474.

    Article  PubMed  Google Scholar 

  15. Lamichhane G, Freundlich JS, Ekins S, Wickramaratne N, Nolan S, Bishai WR. Essential metabolites of M. tuberculosis and their mimics. Mbio. 2011;2:e00301–00310.

    Article  PubMed  Google Scholar 

  16. McAdam RA, Quan S, Smith DA, Bardarov S, Betts JC, Cook FC, Hooker EU, Lewis AP, Woollard P, Everett MJ, Lukey PT, Bancroft GJ, Jacobs Jr WR, Duncan K. Characterization of a mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology. 2002;148:2975–86.

    PubMed  CAS  Google Scholar 

  17. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003;48:77–84.

    Article  PubMed  CAS  Google Scholar 

  18. Sassettiand CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:12989–94.

    Article  Google Scholar 

  19. Lamichhane G, Tyagi S, Bishai WR. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun. 2005;73:2533–40.

    Article  PubMed  CAS  Google Scholar 

  20. Jain SK, Hernandez-Abanto SM, Cheng QJ, Singh P, Ly LH, Klinkenberg LG, Morrison NE, Converse PJ, Nuermberger E, Grosset J, McMurray DN, Karakousis PC, Lamichhane G, Bishai WR. Accelerated detection of Mycobacterium tuberculosis genes essential for bacterial survival in guinea pigs, compared with mice. J Infect Dis. 2007;195:1634–42.

    Article  PubMed  CAS  Google Scholar 

  21. Reddy TB, Riley R, Wymore F, Montgomery P, DeCaprio D, Engels R, Gellesch M, Hubble J, Jen D, Jin H, Koehrsen M, Larson L, Mao M, Nitzberg M, Sisk P, Stolte C, Weiner B, White J, Zachariah ZK, Sherlock G, Galagan JE, Ball CA, Schoolnik GK. TB database: an integrated platform for tuberculosis research. Nucleic Acids Res. 2009;37:D499–508.

    Article  PubMed  CAS  Google Scholar 

  22. Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, Reddy TB, Zucker JD, Engels R, Gellesch M, Hubble J, Jin H, Larson L, Mao M, Nitzberg M, White J, Zachariah ZK, Sherlock G, Ball CA, Schoolnik GK. TB database 2010: overview and update. Tuberculosis (Edinburgh, Scotland). 2010;90:225–35.

    Article  Google Scholar 

  23. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem. 2005;29:368–78.

    Article  PubMed  CAS  Google Scholar 

  24. Prathipati P, Ma NL, Manjunatha UH, Bender A. Fishing the target of antitubercular compounds: in silico target deconvolution model development and validation. J Proteome Res. 2009;8:2788–98.

    Article  PubMed  CAS  Google Scholar 

  25. Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, Hohman M, Bunin B. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSystems. 2010;6:840–51.

    Article  CAS  Google Scholar 

  26. Zheng X, Ekins S, Rauffman J-P, Polli JE. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm. 2009;6:1591–603.

    Article  PubMed  CAS  Google Scholar 

  27. Ekinsand S, Freundlich JS. Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets. Pharmaceut Res. 2011;28:1859–69.

    Article  Google Scholar 

  28. Ekins S, Kaneko T, Lipinksi CA, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, Ernst S, Yang J, Goncharoff N, Hohman M, Bunin B. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol BioSyst. 2010;6:2316–24.

    Article  PubMed  CAS  Google Scholar 

  29. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720–2.

    Article  PubMed  CAS  Google Scholar 

  30. Collinsand L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997;41:1004–9.

    Google Scholar 

  31. Weininger D. SMILES 1. Introduction and encoding rules. J Chem Inform Comput Sci. 1988;28:31.

    Article  CAS  Google Scholar 

  32. Ekinsand S, Williams AJ. Meta-analysis of molecular property patterns and filtering of public datasets of antimalarial “hits” and drugs. MedChemComm. 2010;1:325–30.

    Article  Google Scholar 

  33. Ekinsand S, Williams AJ. When pharmaceutical companies publish large datasets: an abundance of riches or fool’s gold? Drug Disc Today. 2010;15:812–5.

    Article  Google Scholar 

  34. http://biocyc.org.

  35. Karp PD. Pathway databases: a case study in computational symbolic theories. Science. 2001;293:2040–4.

    Article  PubMed  CAS  Google Scholar 

  36. http://pl.csl.sri.com.

  37. Tiwari A, Talcott C, Knapp M, Lincoln P, Laderoute K. Analyzing pathways using SAT-based approaches. In: Ania H, Horimoto K, Kutsia T, editors. Algebraic biology, vol. 4545. 2007. p. 155–69.

    Chapter  Google Scholar 

  38. Talcott C, Eker S, Knapp M, Lincoln P, Laderoute K. Pathway logic modeling of protein functional domains in signal transduction. Pac Symp Biocomput 2004;568–580.

  39. Talcott C. Symbolic modeling of signal transduction in pathway logic. In: Perrone LF, Wieland FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM, editors. 2006 winter simulation conference. 2006. p. 1656–65.

    Chapter  Google Scholar 

  40. Hohman M, Gregory K, Chibale K, Smith PJ, Ekins S, Bunin B. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Disc Today. 2009;14:261–70.

    Article  CAS  Google Scholar 

  41. Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.

    Article  PubMed  CAS  Google Scholar 

  42. Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, Maddry JA, Mehta A, Rasmussen L, Reynolds RC, Secrist 3rd JA, Shindo N, Showe DN, Sosa MI, Suling WJ, White EL. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2009;89:334–53.

    Article  CAS  Google Scholar 

  43. Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, Rasmussen L, Reynolds RC, Secrist 3rd JA, Sosa MI, White EL, Zhang W. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinburgh, Scotland). 2009;89:354–63.

    Article  CAS  Google Scholar 

  44. Kordulakova J, Janin YL, Liav A, Barilone N, Dos Vultos T, Rauzier J, Brennan PJ, Gicquel B, Jackson M. Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51:3824–9.

    Article  PubMed  CAS  Google Scholar 

  45. Kachhadia VV, Patel MR, Joshi HS. Heterocyclic systems containing S/N regioselective nucleophilic competition: facile synthesis, antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinones containing the benzo[b]thiophene moiety. J Serb Chem Soc. 2005;70:153–61.

    Article  CAS  Google Scholar 

  46. Gutka HJ, Rukseree K, Wheeler PR, Franzblau SG, Movahedzadeh F. glpX gene of mycobacterium tuberculosis: heterologous expression, purification, and enzymatic characterization of the encoded fructose 1,6-bisphosphatase II. Appl Biochem Biotechnol. 2011;164:1376–89.

    Article  PubMed  CAS  Google Scholar 

  47. Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Disc Today. 2011;16:298–310.

    Article  Google Scholar 

  48. Lougheed KE, Taylor DL, Osborne SA, Bryans JS, Buxton RS. New anti-tuberculosis agents amongst known drugs. Tuberculosis (Edinburgh, Scotland). 2009;89:364–70.

    Article  CAS  Google Scholar 

  49. Polgar T, Baki A, Szendrei GI, Keseru GM. Comparative virtual and experimental high-throughput screening for glycogen synthase kinase-3beta inhibitors. J Med Chem. 2005;48:7946–59.

    Article  PubMed  CAS  Google Scholar 

  50. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK. Molecular docking and highthroughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem. 2002;45:2213–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & DISCLOSURES

S.E. kindly acknowledges CDD colleagues for developing the CDD TB database as well as the many TB research collaborators. M.S. and C.T acknowledge the Biocyc group and TBDB for access to tools and data. J.S.F. acknowledges generous start-up funding from UMDNJ-New Jersey Medical School. The CDD TB database was made possible with funding from the Bill and Melinda Gates Foundation (Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing”). The project described was supported by Award Number R41AI088893 from the National Institute of Allergy And Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of Allergy And Infectious Diseases or the National Institutes of Health.

S.E. is a consultant for Collaborative Drug Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 1.05 mb)

ESM 2

(CSV 90.8 kb)

ESM 3

(XLSX 26.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarker, M., Talcott, C., Madrid, P. et al. Combining Cheminformatics Methods and Pathway Analysis to Identify Molecules with Whole-Cell Activity Against Mycobacterium Tuberculosis . Pharm Res 29, 2115–2127 (2012). https://doi.org/10.1007/s11095-012-0741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0741-5

Key Words

Navigation