Skip to main content

Advertisement

Log in

Magnetic Nanoparticles for Cancer Diagnosis and Therapy

  • Expert review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cell

DMNP:

drug-delivering magnetic nanoparticles

DOX:

doxorubicin

Gd:

gadolinium

GFP:

green fluorescent protein

HER:

anti HER2/neu antibody

IRR:

irrelevant antibody

MN:

magnetic nanoparticle

NIR:

near infrared

RFP:

red fluorescent protein

R2:

transverse relaxation rate

T1:

longitudinal relaxation time

T2:

transverse relaxation time

REFERENCES

  1. Pautler M, Brenner S. Nanomedicine: promises and challenges for the future of public health. Int J Nanomedicine. 2010;5:803–9.

    PubMed  Google Scholar 

  2. Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 2011;44:853–62.

    Google Scholar 

  3. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans NanoBiosci. 2004;3:66–73.

    Article  Google Scholar 

  4. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36:R167–81.

    Article  CAS  Google Scholar 

  5. Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology. 2003;228:777–88.

    Article  PubMed  Google Scholar 

  6. Kim HS, Oh SY, Joo HJ, Son KR, Song IC, Moon WK. The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed. 2010;23:514–22.

    Article  PubMed  CAS  Google Scholar 

  7. Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:386–93.

    Article  PubMed  CAS  Google Scholar 

  8. Saokar A, Gee MS, Islam T, Mueller PR, Harisinghani MG. Appearance of primary lymphoid malignancies on lymphotropic nanoparticle-enhanced magnetic resonance imaging using ferumoxtran-10. Clin Imag. 2010;34:448–52.

    Article  Google Scholar 

  9. Spinowitz BS, Kausz AT, Baptista J, et al. Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol. 2008;19:1599–605.

    Article  PubMed  CAS  Google Scholar 

  10. Babes L, Denizot B, Tanguy G, Le JJJ, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci. 1999;212:474–82.

    Article  PubMed  CAS  Google Scholar 

  11. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17:484–99.

    Article  PubMed  CAS  Google Scholar 

  12. Sjogren CE, Briley-Saebo K, Hanson M, Johansson C. Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med. 1994;31:268–72.

    Article  PubMed  CAS  Google Scholar 

  13. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Delivery Rev. 1995;16:321–33.

    Article  CAS  Google Scholar 

  14. Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD. The effects of iron oxides on proton relaxivity. Magn Reson Imag. 1988;6:647–53.

    Article  CAS  Google Scholar 

  15. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  PubMed  CAS  Google Scholar 

  16. Sun C, Du K, Fang C, et al. PEG-Mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano. 2010;4:2402–10.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23:1553–61.

    Article  PubMed  CAS  Google Scholar 

  18. Corsi F, De Palma C, Colombo M, et al. Towards ideal magnetofluorescent nanoparticles for bimodal detection of breast-cancer cells. Small. 2009;5:2555–64.

    Article  PubMed  CAS  Google Scholar 

  19. Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc. 2006;1:73–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wang P, Yigit MV, Medarova Z, et al. Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes. 2011;60:565–71.

    Article  PubMed  CAS  Google Scholar 

  21. Bae KH, Kim YB, Lee Y, Hwang J, Park H, Park TG. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjugate Chem. 2010;21:505–12.

    Article  CAS  Google Scholar 

  22. Yang X, Hong H, Grailer JJ, et al. cRGD-functionalized, DOX-conjugated, and Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32:4151–60.

    Article  PubMed  CAS  Google Scholar 

  23. Yigit MV, Zhu L, Ifediba MA, et al. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano. 2011;5:1056–66.

    Article  PubMed  CAS  Google Scholar 

  24. Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun (Camb). 2010;46:8633–5.

    Article  CAS  Google Scholar 

  25. Gaihre B, Khil MS, Kim HY. In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles. J Microencapsul. 2011;28:286–93.

    Article  PubMed  CAS  Google Scholar 

  26. Kievit FM, Wang FY, Fang C, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Contr Release. 2011;152:76–83.

    Article  CAS  Google Scholar 

  27. Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed. 2009;48:4174–9.

    Article  CAS  Google Scholar 

  28. Taratula O, Garbuzenko O, Savla R, Wang YA, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv. 2011;8:59–69.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano. 2010;4:4733–43.

    Article  PubMed  CAS  Google Scholar 

  30. Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lee CS, Lee H, Westervelt RM. Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett. 2001;79:3308–10.

    Article  CAS  Google Scholar 

  32. Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 1995;16:195–214.

    Article  CAS  Google Scholar 

  33. Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004;25:3029–40.

    Article  PubMed  CAS  Google Scholar 

  34. Tourinho F, Franck R, Massart R, Perzynski R. Synthesis and magnetic properties of manganese and cobalt ferrite ferrofluids. Prog Colloid Polym Sci. 1989;79:128–34.

    Article  CAS  Google Scholar 

  35. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater. 2001;225:30–6.

    Article  CAS  Google Scholar 

  36. Portet D, Denizot B, Rump E, Lejeune J-J, Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci. 2001;238:37–42.

    Article  PubMed  CAS  Google Scholar 

  37. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging. Physicochemical characteristics and clinical applications. A review. J Drug Target. 1998;6:167–74.

    Article  PubMed  CAS  Google Scholar 

  38. Kim DK, Zhang Y, Voit W, et al. Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr Mater. 2001;44:1713–7.

    Article  CAS  Google Scholar 

  39. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  PubMed  CAS  Google Scholar 

  40. Bean CP, Livingston JD. Superparamagnetism. J Appl Phys. 1959;30:120S–9S.

    Article  CAS  Google Scholar 

  41. Tartaj P, Morales MdP, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys. 2003;36:R182–97.

    Article  CAS  Google Scholar 

  42. Goya GF, Berquó TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys. 2003;94:3520–8.

    Article  CAS  Google Scholar 

  43. Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater. 2007;19:33–60.

    Article  CAS  Google Scholar 

  44. Mikhaylova M, Kim DK, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir. 2004;20:2472–7.

    Article  PubMed  CAS  Google Scholar 

  45. Bedanta S, Kleemann W. Supermagnetism. J Phys D: Appl Phys 2009;42 013001.

  46. Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res. 2010;70:7553–61.

    Article  PubMed  CAS  Google Scholar 

  47. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In-vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13:372–7.

    Article  PubMed  CAS  Google Scholar 

  48. Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A. Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res. 2009;69:1182–9.

    Article  PubMed  CAS  Google Scholar 

  49. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–65.

    Article  PubMed  CAS  Google Scholar 

  50. Ferrari M. Vectoring siRNA therapeutics into the clinic. Nat Rev Clin Oncol. 2010;7:485–6.

    Article  PubMed  CAS  Google Scholar 

  51. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104:15549–54.

    Article  PubMed  CAS  Google Scholar 

  52. Kievit FM, Veiseh O, Fang C, et al. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano. 2010;4:4587–94.

    Article  PubMed  CAS  Google Scholar 

  53. Mikhaylova M, Stasinopoulos I, Kato Y, Artemov D, Bhujwalla ZM. Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther. 2009;16:217–26.

    PubMed  CAS  Google Scholar 

  54. Agrawal A, Min DH, Singh N, et al. Functional delivery of siRNA in mice using dendriworms. ACS Nano. 2009;3:2495–504.

    Article  PubMed  CAS  Google Scholar 

  55. Yang J, Lee CH, Ko HJ, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl. 2007;46:8836–9.

    Article  PubMed  CAS  Google Scholar 

  56. Yu MK, Jeong YY, Park J, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008;47:5362–5.

    Article  PubMed  CAS  Google Scholar 

  57. Lim E-K, Huh Y-M, Yang J, Lee K, Suh J-S, Haam S. pH-Triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater. 2011;23:2436–42.

    Article  PubMed  CAS  Google Scholar 

  58. Yu MK, Kim D, Lee I-H, So J-S, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–9.

    Article  PubMed  CAS  Google Scholar 

  59. Srinivas M, Aarntzen EH, Bulte JW, et al. Imaging of cellular therapies. Adv Drug Deliv Rev. 2010;62:1080–93.

    Article  PubMed  CAS  Google Scholar 

  60. Roach 3rd M, Alberini JL, Pecking AP, et al. Diagnostic and therapeutic imaging for cancer: therapeutic considerations and future directions. J Surg Oncol. 2011;103:587–601.

    Article  PubMed  Google Scholar 

  61. Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imag. 1995;13:1119–24.

    Article  CAS  Google Scholar 

  62. de Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23:1407–13.

    Article  PubMed  Google Scholar 

  63. Long CM, van Laarhoven HW, Bulte JW, Levitsky HI. Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 2009;69:3180–7.

    Article  PubMed  CAS  Google Scholar 

  64. Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010;1:5358. doi:10.3402/nano.v1i0.5358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravka Medarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yigit, M.V., Moore, A. & Medarova, Z. Magnetic Nanoparticles for Cancer Diagnosis and Therapy. Pharm Res 29, 1180–1188 (2012). https://doi.org/10.1007/s11095-012-0679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0679-7

KEY WORDS

Navigation