Skip to main content

Advertisement

Log in

Formulation and In Vitro Characterization of Composite Biodegradable Magnetic Nanoparticles for Magnetically Guided Cell Delivery

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells.

Methods

Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter.

Results

A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy.

Conclusions

Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ad:

adenovirus

BAEC:

bovine aortic endothelial cells

BSA:

bovine serum albumin

CAR:

Coxsackie-adenovirus receptor

CMV:

cytomegalovirus

DCC:

1,3-dicyclohexylcarbodiimide

DMEM:

Dulbecco’s modification of Eagle’s medium

EDC:

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

FBS:

fetal bovine serum

GFP:

green fluorescent protein

MNP:

magnetic nanoparticle

PBS:

phosphate buffered saline

PLA:

polylactide

SPDP:

N-succinimidyl 3-(2-pyridyldithio)propionate

REFERENCES

  1. Schlorf T, Meincke M, Kossel E, Gluer CC, Jansen O, Mentlein R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int J Mol Sci. 2011;12(1):12–23.

    Article  CAS  Google Scholar 

  2. Sykova E, Jendelova P, Herynek V. MR tracking of stem cells in living recipients. Methods Mol Biol. 2009;549:197–215.

    Article  PubMed  CAS  Google Scholar 

  3. Pislaru SV, Harbuzariu A, Agarwal G, Witt T, Gulati R, Sandhu NP, et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 2006;114(1 Suppl):I314–8.

    PubMed  Google Scholar 

  4. Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, et al. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 2006;48(9):1839–45.

    Article  PubMed  CAS  Google Scholar 

  5. Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, Garcia-Prieto A, Price AN, Martin JF, et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc Interv. 2009;2(8):794–802.

    Article  PubMed  Google Scholar 

  6. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, et al. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci U S A. 2009;106(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  7. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, et al. High field magnetic gradients can target magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A. 2008;105(2):698–703.

    Article  PubMed  CAS  Google Scholar 

  8. Shimizu K, Ito A, Arinobe M, Murase Y, Iwata Y, Narita Y, et al. Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J Biosci Bioeng. 2007;103(5):472–8.

    Article  PubMed  CAS  Google Scholar 

  9. Muthana M, Scott SD, Farrow N, Morrow F, Murdoch C, Grubb S, et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 2008;15(12):902–10.

    Article  PubMed  CAS  Google Scholar 

  10. Fishbein I, Chorny M, Levy RJ. Site-specific gene therapy for cardiovascular disease. Curr Opin Drug Discov Devel. 2010;13(2):203–13.

    PubMed  CAS  Google Scholar 

  11. Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2010;32(1):195–205.

    Article  PubMed  Google Scholar 

  12. Nyanguile O, Dancik C, Blakemore J, Mulgrew K, Kaleko M, Stevenson SC. Synthesis of adenoviral targeting molecules by intein-mediated protein ligation. Gene Ther. 2003;10(16):1362–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chorny M, Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Levy RJ. Adenoviral gene vector tethering to nanoparticle surfaces results in receptor-independent cell entry and increased transgene expression. Mol Ther. 2006;14(3):382–91.

    Article  PubMed  CAS  Google Scholar 

  14. Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J. 2007;21(10):2510–9.

    Article  PubMed  CAS  Google Scholar 

  15. Chorny M, Fishbein I, Alferiev I, Levy RJ. Magnetically responsive biodegradable nanoparticles enhance adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol Pharm. 2009;6(5):1380–7.

    Article  PubMed  CAS  Google Scholar 

  16. Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci U S A. 2010;107(18):8346–51.

    Article  PubMed  CAS  Google Scholar 

  17. Wilhelm C, Gazeau F, Bacri JC. Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67(6 Pt 1):061908.

    Article  PubMed  CAS  Google Scholar 

  18. Tresilwised N, Pithayanukul P, Mykhaylyk O, Holm PS, Holzmuller R, Anton M, et al. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol Pharm. 2010;7(4):1069–89.

    Article  PubMed  CAS  Google Scholar 

  19. Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials. 2012;33(1):256–69.

    Article  PubMed  CAS  Google Scholar 

  20. Mah C, Fraites Jr TJ, Zolotukhin I, Song S, Flotte TR, Dobson J, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther. 2002;6(1):106–12.

    Article  PubMed  CAS  Google Scholar 

  21. Chorny M, Fishbein I, Levy RJ. Endothelial cells transduced with magnetically responsive nanoparticles formulated with iNOS encoding adenovirus inhibit proliferation of aortic smooth muscle cells in a direct co-culture model. Mol Ther. 2009;17:S393.

    Google Scholar 

  22. Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med. 2004;6(8):923–36.

    Article  PubMed  CAS  Google Scholar 

  23. Chorny M, Fishbein I, Forbes S, Alferiev I. Magnetic nanoparticles for targeted vascular delivery. IUBMB Life. 2011;63(8):613–20.

    Article  PubMed  CAS  Google Scholar 

  24. Kempe H, Kates SA, Kempe M. Nanomedicine’s promising therapy: magnetic drug targeting. Expert Rev Med Devices. 2011;8(3):291–4.

    Article  PubMed  Google Scholar 

  25. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–89.

    Article  PubMed  CAS  Google Scholar 

  26. Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83(3):389–400.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This research was supported in part by grants from the NIH (HL72108 and HL94816), the American Heart Association (Scientist Development Grant 10SDG4020003), the Nanotechnology Institute and the William J. Rashkind Endowment of The Children’s Hospital of Philadelphia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Chorny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chorny, M., Alferiev, I.S., Fishbein, I. et al. Formulation and In Vitro Characterization of Composite Biodegradable Magnetic Nanoparticles for Magnetically Guided Cell Delivery. Pharm Res 29, 1232–1241 (2012). https://doi.org/10.1007/s11095-012-0675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0675-y

KEY WORDS

Navigation