Skip to main content
Log in

Force Dependent Internalization of Magnetic Nanoparticles Results in Highly Loaded Endothelial Cells for Use as Potential Therapy Delivery Vectors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function.

Methods

MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays.

Results

MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient.

Conclusions

Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAEC:

bovine aortic endothelial cell

DLS:

dynamic light scattering

FBS:

fetal bovine serum

MNP:

magnetic nanoparticles

PBS:

phosphate buffered saline

PLA:

poly(lactic acid)

PVA:

poly(vinyl alcohol)

References

  1. McBain S, Yiu HH, Dobson J. Magnetic nanoparticles for drug and gene delivery. Int J Nanomed. 2008;3:169–80.

    CAS  Google Scholar 

  2. Pankhurst QA, Thanh NKT, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2009;42.

  3. Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Exp Opin Drug Deliv. 2009;6:53–70.

    Article  CAS  Google Scholar 

  4. Plank C, Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krotz F, Hirschberger J, Bergemann C. Advances in magnetofection—magnetically guided nucleic acid delivery. J Magn Magn Mater. 2005;293:501–8.

    Article  Google Scholar 

  5. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C. siRNA delivery by magnetofection. Curr Opin Mol Ther. 2008;10:493–505.

    PubMed  CAS  Google Scholar 

  6. Chariand D, Pickard M. Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by ‘magnetofection’: effects of static and oscillating fields. Nanomedicine. 2010;5:217–32.

    Article  Google Scholar 

  7. Dobson J, McBain SC, Farrow N, Batich CD. Magnetic nanoparticle-based gene trasnfection using oscillating magnet arrays. Tissue Eng Part A. 2008;14:875–6.

    Google Scholar 

  8. Chorny M, Fishbein I, Alferiev I, Levy RJ. Magnetically responsive biodegradable nanoparticles enhance adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol Pharm. 2009;6:1380–7.

    Article  PubMed  CAS  Google Scholar 

  9. Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J. 2007;21:2510–9.

    Article  PubMed  CAS  Google Scholar 

  10. Mah C, Fraites Jr TJ, Zolotukhin I, Song S, Flotte TR, Dobson J, Batich C, Byrne BJ. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther. 2002;6:106–12.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson B, Toland B, Chokshi R, Mochalin V, Koutzaki S, Polyak B. Magnetically responsive, paclitaxel-loaded biodegradable nanoparticles for treatment of vascular disease: preparation, characterizaton and in vitro evaluation of anti-proliferative potential. Curr Drug Deliv. 2010;7:263–73.

    Article  PubMed  CAS  Google Scholar 

  12. Senyei A, Widder K, Czerlinski G. Magnetic guidance of drug-carrying microspheres. J Appl Phys. 1978;49:3578–83.

    Article  CAS  Google Scholar 

  13. Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res. 2001;95:200–6.

    Article  PubMed  CAS  Google Scholar 

  14. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm. 2005;2:194–205.

    Article  PubMed  CAS  Google Scholar 

  15. Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6:1417–28.

    Article  PubMed  CAS  Google Scholar 

  16. Muthana M, Scott SD, Farrow N, Morrow F, Murdoch C, Grubb S, Brown N, Dobson J, Lewis CE. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 2008;15:902–10.

    Article  PubMed  CAS  Google Scholar 

  17. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, Friedman G. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. PNAS. 2008;105:698–703.

    Article  PubMed  CAS  Google Scholar 

  18. Pislaru SV, Harbuzariu A, Agarwal G, Witt T, Gulati R, Sandhu NP, Mueske C, Kalra M, Simari RD, Sandhu GS. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 2006;114:I314–318.

    Article  PubMed  Google Scholar 

  19. Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, Sandhu GS. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 2006;48:1839–45.

    Article  PubMed  CAS  Google Scholar 

  20. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:2161–75.

    Article  CAS  Google Scholar 

  21. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  PubMed  CAS  Google Scholar 

  22. Cinti C, Taranta M, Naldi I, Grimaldi S. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds. PLoS One. 2011;6.

  23. Magnani A, Pierige F, Serafini S, Rossi L. Cell-based drug delivery. Adv Drug Deliv Rev. 2008;60:286–95.

    Article  PubMed  Google Scholar 

  24. Forbes ZG, Yellen BB, Halverson DS, Fridman G, Barbee KA, Friedman G. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans Biomed Eng. 2008;55:643–9.

    Article  PubMed  Google Scholar 

  25. Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci USA. 2010;107:8346–51.

    Article  PubMed  CAS  Google Scholar 

  26. Kim J, Yoon T, Yu K, Noh M, Woo M, Kim B. Cellular uptake of magnetic nanoparticles is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci. 2006;7.

  27. Lunov O, Zablotskii V, Syrovets T, Rocker C, Tron K, Nienhaus GU, Simmet T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials. 2011;32:547–55.

    Article  PubMed  CAS  Google Scholar 

  28. Maand Y, Gu H. Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro. J Mater Sci Mater Med. 2007;18:2145–9.

    Article  Google Scholar 

  29. Wuang SC, Neoh KG, Kang ET, Pack DW, Leckband DE. HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials. 2008;29:2270–9.

    Article  PubMed  CAS  Google Scholar 

  30. Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.

    Article  PubMed  CAS  Google Scholar 

  31. Chari DM, Pickard MR, Barraud P. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials. 2011;32:2274–84.

    Article  PubMed  Google Scholar 

  32. Dobson J, McBain SC, Griesenbach U, Xenariou S, Keramane A, Batich CD, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology. 2008;19.

  33. MacDonald C, Friedman G, Alamia J, Barbee K, Polyak B. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel. Nanomedicine. 2010;5:65–76.

    Article  PubMed  CAS  Google Scholar 

  34. Gamarra LF, Pavon LF, Marti LC, Pontuschka WM, Mamani JB, Carneiro SM, Camargo-Mathias MI, Moreira-Filho CA, Amaro Jr E. In vitro study of CD133 human stem cells labeled with superparamagnetic iron oxide nanoparticles. Nanomedicine. 2008;4:330–9.

    Article  PubMed  CAS  Google Scholar 

  35. Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood. 2004;104:1217–23.

    Article  PubMed  CAS  Google Scholar 

  36. Castellot JJ, Karnovsky MJ, Spiegelman BM. Potent stimulation of vascular endothelial cell-growth by differentiated 3t3 adipocytes. Proc Natl Acad Sci USA-Biol Sci. 1980;77:6007–11.

    Article  CAS  Google Scholar 

  37. Ong AT, Aoki J, Kutryk MJ, Serruys PW. How to accelerate the endothelialization of stents. Arch Mal Coeur Vaiss. 2005;98:123–6.

    PubMed  CAS  Google Scholar 

  38. Taha MF. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders. Curr Stem Cell Res Ther. 5:23–36.

  39. Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibr Toxicol. 2009;6.

  40. Ale-Agha N, Albrecht C, Klotza LO. Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles. Biol Chem. 2010;391:1333–9.

    Article  PubMed  CAS  Google Scholar 

  41. Patel S, Bachman LA, Hann CR, Bahler CK, Fautsch M. Human corneal endothelial cell transplantation in a human ex vivo model. Investig Ophthalmol Vis Sci. 2009;50:2123–31.

    Article  Google Scholar 

  42. Forbes ZG, Barbee KA, Stoddard FR, Morgan DA, Brooks AD, Friedman G. Improving the efficacy of cellular therapy by magnetic cell targeting. Cytotherapy. 2006;8.

Download references

Acknowledgments & Disclosures

This study was partially supported by Award Number R01HL107771 from the National Heart, Lung, And Blood Institute and by Award Number F31 GM086128-01 from National Institute of General Medical Sciences supporting Cristin MacDonald’s PhD program through Ruth Kirschstein Research Service Award (RSA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the “National Heart, Lung, And Blood Institute or the National Institutes of Health.” Authors thank Dr. Robert Levy from the Children’s Hospital of Philadelphia for his generous gift of the poly(lactide) covalently labeled with BODIPY® 564/570 (Life TechnologiesTM) and Richard Sensenig from the Department of Surgery, Drexel University College of Medicine for reviewing the manuscript and providing constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Polyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, C., Barbee, K. & Polyak, B. Force Dependent Internalization of Magnetic Nanoparticles Results in Highly Loaded Endothelial Cells for Use as Potential Therapy Delivery Vectors. Pharm Res 29, 1270–1281 (2012). https://doi.org/10.1007/s11095-011-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0663-7

Key Words

Navigation