Skip to main content
Log in

Silica-Iron Oxide Magnetic Nanoparticles Modified for Gene Delivery: A Search for Optimum and Quantitative Criteria

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 03 February 2012

ABSTRACT

Purpose

To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery.

Methods

Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI.

Results

Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9–12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r2* relaxivity values (>600 s−1(mM Fe)−1) for the free and cell-internalized particles.

Conclusions

Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

FCS:

fetal calf serum

ME-FFE:

multi-echo gradient echo

MNP:

magnetic nanoparticles

mPDAC:

mouse pancreatic ductal adenocarcinoma

MRI:

magnetic resonance imaging

PBS:

Dulbecco’s phosphate buffered saline

PEI:

polyethylenimine

SIO-MNP:

silica-iron oxide magnetic nanoparticle

SiOx :

silica-like coating of the iron oxide nanoparticles

TEM:

Transmission Electron Microscopy

TEOS:

tetraethyl orthosilicate

THPMP:

3-(trihydroxysilyl) propylmethylphosphonate

TU:

transducing units

VP:

virus particle

XPS:

X-ray photoelectron spectroscopy

REFERENCES

  1. Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-Progress and prospects. Adv Drug Deliv Rev. 2011; 63:1300–31.

    Google Scholar 

  2. Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol Ther. 2001;3:623–30.

    Article  PubMed  CAS  Google Scholar 

  3. Mah C, Fraites JTJ, Zolotukhin I, Song S, Flotte TR, Dobson J, Batich C, Byrne BJ. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther. 2002;6:106–12.

    Article  PubMed  CAS  Google Scholar 

  4. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.

    Article  PubMed  CAS  Google Scholar 

  5. Chorny M, Fishbein I, Alferiev I, Levy RJ. Magnetically responsive biodegradable nanoparticles enhance adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol Pharm. 2009;6:1380–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, Schulte M, Zimmermann K, Bergemann C, Gleich B, Roell W, Weyh T, Trahms L, Nickenig G, Fleischmann BK, Pfeifer A. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci U S A. 2009;106:44–9.

    Article  PubMed  CAS  Google Scholar 

  7. Shi Y, Zhou L, Wang R, Pang Y, Xiao W, Li H, Su Y, Wang X, Zhu B, Zhu X, Yan D, Gu H. In situ preparation of magnetic nonviral gene vectors and magnetofection in vitro. Nanotechnology. 2010;21:115103.

    Article  PubMed  Google Scholar 

  8. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31:4204–13.

    Article  PubMed  CAS  Google Scholar 

  9. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28:632–40.

    Article  PubMed  CAS  Google Scholar 

  10. Ang D, Nguyen QV, Kayal S, Preiser PR, Rawat RS, Ramanujana RV. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomater. 2011;7:1319–26.

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guerin N, Paradis G, Bronich TK, Alakhov VY, Kabanov AV. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 2000;7:126–38.

    Article  PubMed  CAS  Google Scholar 

  12. Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci. 2011;12:3705–22.

    Article  PubMed  CAS  Google Scholar 

  13. Arsianti M, Lim M, Marquis CP, Amal R. Polyethylenimine based magnetic iron-oxide vector: the effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules. 2010;11:2521–31.

    Article  PubMed  CAS  Google Scholar 

  14. Arsianti M, Lim M, Marquis CP, Amal R. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir. 2010;26:7314–26.

    Article  PubMed  CAS  Google Scholar 

  15. Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials. 2012;33:256–69.

    Article  PubMed  CAS  Google Scholar 

  16. Sanchez-Antequera Y, Mykhaylyk O, Thalhammer S, Plank C. Gene delivery to Jurkat T cells using non-viral vectors associated with magnetic nanoparticles. Int J Biomed Nanoscience Nanotechnology. 2010;1:202–29.

    Article  CAS  Google Scholar 

  17. Pasqua L, Cundari S, Ceresa C, Cavaletti G. Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology. Curr Med Chem. 2009;16:3054–63.

    Article  PubMed  CAS  Google Scholar 

  18. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6:1952–67.

    Article  PubMed  CAS  Google Scholar 

  19. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  20. Vogt C, Toprak MS, Muhammed M, Laurent S, Bridot JL, Muller RN. High quality and tuneable silica shell-magnetic core nanoparticles. J Nanoparticle Res. 2010;12:1137–47.

    Article  CAS  Google Scholar 

  21. Selvan ST, Tan TT, Ying JY. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater. 2005;17:1620.

    Article  CAS  Google Scholar 

  22. Sotiriou GA, Hirt AM, Lozach PY, Teleki A, Krumeich F, Pratsinis SE. Hybrid, silica-coated, janus-like plasmonic-magnetic nanoparticles. Chem Mater. 2011;23:1985–92.

    Article  CAS  Google Scholar 

  23. Wiesner U, Suteewong T, Sai H, Lee J, Bradbury M, Hyeon T, Gruner SM. Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. J Mater Chem. 2010;20:7807–14.

    Article  Google Scholar 

  24. Yiu HHP, McBain SC, Lethbridge ZAD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J Biomed Mater Res Part A. 2010;92A:386–92.

    Article  CAS  Google Scholar 

  25. Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Hammerschmid E, Anton M, Zelphati O, Plank C. Liposomal magnetofection. Meth Mol Biol. 2010;605:487–525.

    Article  CAS  Google Scholar 

  26. Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, Anton M, Johnston ICD, Pojda Z, Wagemaker G, Plank C. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:E171–81.

    Article  PubMed  CAS  Google Scholar 

  27. Cebrián V, Yagüe C, Arruebo M, Martín-Saavedra F, Santamaría J, Vilaboa N. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors. J Nanoparticle Res. 2011;1–12.

  28. Bringley JF, Wunder A, Howe AM, Wesley RD, Qiao TA, Liebert NB, Kelley B, Minter J, Antalek B, Hewitt JM. Controlled, simultaneous assembly of polyethylenimine onto nanoparticle silica colloids. Langmuir. 2006;22:4198–207.

    Article  PubMed  CAS  Google Scholar 

  29. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2:2391–411.

    Article  PubMed  CAS  Google Scholar 

  30. Matz H, Drung D, Hartwig S, Gross H, Kotitz R, Muller W, Vass A, Weitschies W, Trahms L. A SQUID measurement system for immunoassays. Appl Supercond. 1998;6:577–83.

    Article  CAS  Google Scholar 

  31. Eberbeck D, Wiekhorst F, Steinhoff U, Trahms L. Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. J Phys Condens Matter. 2006;18:S2829–46.

    Article  CAS  Google Scholar 

  32. Eberbeckand D, Trahms L. Experimental investigation of dipolar interaction in suspensions of magnetic nanoparticles. J Magn Magn Mater. 2011;323:1228–32.

    Article  Google Scholar 

  33. Badolato GG, Aguilar F, Schuchmann HP, Sobisch T, Lerche D. Evaluation of long term stability of model emulsions by multisample analytical centrifugation. Surf Interfacial Forces Fund Appl. 2008;134:66–73.

    Article  CAS  Google Scholar 

  34. Sobischand T, Lerche D. Thickener performance traced by multisample analytical centrifugation. Colloid Surface Physicochem Eng Aspect. 2008;331:114–8.

    Article  Google Scholar 

  35. Detloff T, Sobisch T, Lerche D. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technol. 2007;174:50–5.

    Article  CAS  Google Scholar 

  36. Wübbenhorst D, Dumler K, Wagner B, Wexel G, Imhoff A, Gansbacher B, Vogt S, Anton M. Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum. 2010;62:2037–46.

    PubMed  Google Scholar 

  37. Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WRA. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther. 2001;12:1103–8.

    Article  PubMed  CAS  Google Scholar 

  38. Herenu CB, Sonntag WE, Morel GR, Portiansky EL, Goya RG. The ependymal route for insulin-like growth factor-1 gene therapy in the brain. Neuroscience. 2009;163:442–7.

    Article  PubMed  CAS  Google Scholar 

  39. Hitt M, Bett AJ, Addison CL, Prevec L, Graham FL. Techniques for human adenovirus vector construction and characterization. In: KW A, editor. Viral gene techniques. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto: Academic; 1995. p. 13–30.

    Chapter  Google Scholar 

  40. Mittereder N, March KL, Trapnell BC. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol. 1996;70:7498–509.

    PubMed  CAS  Google Scholar 

  41. Tresilwised N, Pithayanukul P, Mykhaylyk O, Holm PS, Holzmuller R, Anton M, Thalhammer S, Adiguzel D, Doblinger M, Plank C. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol Pharm. 2010;7:1069–89.

    Article  PubMed  CAS  Google Scholar 

  42. Mykhaylyk O, Steingotter A, Perea H, Aigner J, Botnar R, Plank C. Nucleic acid delivery to magnetically-labeled cells in a 2D array and at the luminal surface of cell culture tube and their detection by MRI. J Biomed Nanotechnol. 2009;5:692–706.

    Article  PubMed  CAS  Google Scholar 

  43. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.

    Article  PubMed  CAS  Google Scholar 

  44. Christoffersson JO, Olsson LE, Sjoberg S. Nickel-doped agarose-gel phantoms in Mr imaging. Acta Radiologica. 1991;32:426–31.

    Article  PubMed  CAS  Google Scholar 

  45. Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn Reson Med. 2005;53:1202–6.

    Article  PubMed  CAS  Google Scholar 

  46. Ogradyand K, Bradbury A. Particle-size analysis in ferrofluids. J Magn Magn Mater. 1983;39:91–4.

    Article  Google Scholar 

  47. Hunt CP, Moskowitz BM, Banerjee SK. Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, American Geophysical Union, Washington D.C., 1995, p. 189.

  48. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  49. Göpel W. “Magnetic dead layers” on chemisorption at ferromagnetic surfaces. Surf Sci. 1979;85:400–12.

    Article  Google Scholar 

  50. Shendrukand TN, et al. The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology. 2007;18:455704.

    Article  Google Scholar 

  51. Goya GF, Berquo TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys. 2003;94:3520–8.

    Article  CAS  Google Scholar 

  52. Anton M, Wolf A, Mykhaylyk O, Koch C, Gansbacher B, Plank C. Optimising Adenoviral Transduction of endothelial cells under flow. Pharm Res. 2011. doi:10.1007/s11095-011-0631-2.

  53. Zhang C, Wängler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Krüger R, Huss R, Seliger C, Semmler W, Kiessling F. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir. 2007;23:1427–34.

    Article  PubMed  CAS  Google Scholar 

  54. Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med. 2002;48:52–61.

    Article  PubMed  CAS  Google Scholar 

  55. Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing1. Radiology. 2007;245:449–57.

    Article  PubMed  Google Scholar 

  56. Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med. 2003;49:646–54.

    Article  PubMed  CAS  Google Scholar 

  57. Klug G, Kampf T, Bloemer S, Bremicker J, Ziener CH, Heymer A, Gbureck U, Rommel E, Nöth U, Schenk WA, Jakob PM, Bauer WR. Intracellular and extracellular T1 and T2 relaxivities of magneto-optical nanoparticles at experimental high fields. Magn Reson Med. 2010;64:1607–15.

    Article  PubMed  Google Scholar 

  58. Levy M, Wilhelm C, Luciani N, Deveaux V, Gendron F, Luciani A, Devaud M, Gazeau F. Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale. 2011;3:4402–10.

    Article  PubMed  CAS  Google Scholar 

  59. Rogers WJ, Meyer CH, Kramer CM. Technology Insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med. 2006;3:554–62.

    Article  PubMed  CAS  Google Scholar 

  60. Sánchez Antequera Y. Magselectofection: A novel integrated technology of magnetic separation and genetic modification of target cells Fakultät für Chemie und Pharmazie Vol. Dr., LMU München, München, 2010, pp. 136, http://edoc.ub.uni-muenchen.de/12746/.

  61. Bagwe RP, Hilliard LR, Tan WH. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 2006;22:4357–62.

    Article  PubMed  CAS  Google Scholar 

  62. Wilhelmand C, Gazeau F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials. 2008;29:3161–74.

    Article  Google Scholar 

  63. Berman S, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscipl Rev Nanomedicine Nanobiotechnology. 2011;3:343–55.

    Article  CAS  Google Scholar 

  64. Ghitescuand L, Fixman A. Surface-charge distribution on the endothelial-cell of liver sinusoids. J Cell Biol. 1984;99:639–47.

    Article  Google Scholar 

  65. Drelichand J, Wang YU. Charge heterogeneity of surfaces: mapping and effects on surface forces. Adv Colloid Interface Sci. 2011;165:91–101.

    Article  Google Scholar 

  66. Gowrishankarand TR, Weaver JC. An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci U S A. 2003;100:3203–8.

    Article  Google Scholar 

  67. Hoeppener S, Maoz R, Cohen SR, Chi LF, Fuchs H, Sagiv J. Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates—a bottom-up chemical approach. Adv Mater. 2002;14:1036–41.

    Article  CAS  Google Scholar 

  68. Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC. Fe3O4@organic@Au: core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chem Commun. 2011;47:2149–51.

    Article  CAS  Google Scholar 

  69. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mykhaylyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 203 kb)

ESM 2

(DOC 1.46 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykhaylyk, O., Sobisch, T., Almstätter, I. et al. Silica-Iron Oxide Magnetic Nanoparticles Modified for Gene Delivery: A Search for Optimum and Quantitative Criteria. Pharm Res 29, 1344–1365 (2012). https://doi.org/10.1007/s11095-011-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0661-9

KEY WORDS

Navigation